
Haskell on a Shared-Memory Multiprocessor

Tim Harris Simon Marlow Simon Peyton Jones
Microsoft Research, Cambridge

{tharris,simonmar,simonpj}@microsoft.com

Abstract
Multi-core processors are coming, and we need ways to program
them. The combination of purely-functional programming and ex-
plicit, monadic threads, communicating using transactional mem-
ory, looks like a particularly promising way to do so. This paper
describes a full-scale implementation of shared-memory parallel
Haskell, based on the Glasgow Haskell Compiler. Our main tech-
nical contribution is a lock-free mechanism for evaluating shared
thunks that eliminates the major performance bottleneck in paral-
lel evaluation of a lazy language. Our results are preliminary but
promising: we can demonstrate wall-clock speedups of a serious
application (GHC itself), even with only two processors, compared
to the same application compiled for a uni-processor.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

General Terms Languages, Performance

1. Introduction
For many years the easiest approach to getting software to go
faster has been to sit around and save up for a new machine (and
then preferably run the old software on it). It is becoming clear,
however, that this free lunch is over [22]. Processor manufacturers
have stopped struggling to push clock speeds much further, and are
turning their attention to parallelism instead. Multi-core processors,
with several symmetric processing cores on a single chip, will be
the norm in consumer machines within the next 1-2 years. The
software challenge is to take advantage of this extra processing
power through parallelism.

The parallel functional programming community has been chas-
ing this very goal for more than two decades, as we discuss in Sec-
tion 8. However, the rules of the game have now changed. In the
past, the free lunch meant that few people were prepared to invest
any effort to parallelise their programs – and even functional pro-
grams take work to parallelise. Furthermore, an N-processor paral-
lel machine used to cost more than N uni-processors. Hence (a) the
market for shared-memory machines was small, and (b) the peo-
ple who cared enough to buy such a machine were seeking perfor-
mance above all else, and were willing to invest lots of program-
ming effort to get it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’05 September 30, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-071-X/05/0009. . . $5.00.

The economics have now changed sharply. Soon every machine
will be a parallel machine, whether we like it or not. Programmers
will therefore be forced to do parallel programming, rather than
relying on the free lunch; and the extra processors come for free1,
rather than costing extra. Parallel functional programming, which
offers the hope of getting moderate parallelism in exchange for
modest effort, suddenly looks more attractive.

Another reason to look at this problem now is the discovery
of Software Transactional Memory (STM) [9], which for the first
time offers programmers a real abstraction mechanism for building
concurrent systems. Furthermore, STM has an efficient shared-
memory implementation, which we will describe later in the paper.

Unlike most other work on parallel functional programming
(see Section 8), we concentrate exclusively on shared-memory ar-
chitectures, because that is the architecture of the upcoming multi-
core processors. The specific contributions of this paper are as fol-
lows:

• Parallel evaluation in a shared heap requires rather intimate
co-operation between processors, especially to avoid race con-
ditions when evaluating and updating thunks. Normally such
co-operation requires synchronisation instructions, such as
compare-and-swap (CAS), but we give measurements that show
that adding these instructions to thunk evaluation is unaccept-
ably expensive: an average overhead of more than 50% across
the nofib benchmark suite.

• Thus motivated, our main technical contribution is a novel tech-
nique for reducing this overhead, by completely eliminating
locking instructions and memory barriers from thunk evalua-
tion and update (Section 3). We get the average overhead down
to less than 6%.

• The lock-free technique, by design, leaves a small possibil-
ity of semantically-harmless duplicate evaluation. We present
techniques for making such duplication very unlikely, and for
bounding the amount of duplication that can take place (Sec-
tion 4).

• We describe a full-scale parallel implementation of Haskell,
based on the Glasgow Haskell Compiler (GHC). All of GHC’s
runtime features are supported: Concurrent Haskell, I/O, the
foreign function interface (FFI), exceptions, interrupts, and
transactional memory (Section 5).

• We give measurements for the overhead of compiling a program
with support for shared-memory parallelism: this is the baseline
overhead, which you pay simply for compiling a program to
work with multiple threads (Section 6).

• The bottom line is wall-clock speedup for real applications. We
demonstrate such a speedup, with only two processors, com-
pared to the same program compiled for a uni-processor (Sec-
tion 7). Our benchmark program is no toy: it is GHC itself. The

1 “For free” means, as it always does, already paid for.

fact that we could parallelise it so easily gives substance to the
claim that parallel functional programming offers a relatively
low-effort way to exploit the power of multi-core processors.

2. Background: multi-threading in Haskell
We begin by setting the context for our work.

2.1 The programmer’s eye view

The programmer may want multi-threaded execution for two dis-
tinct reasons:
Expressiveness. Many programs are concurrent by design. For

example, a web-server may run a concurrent, I/O-performing
thread to service each incoming request. In Concurrent Haskell
[19], these threads are forked explicitly, using the forkIO com-
binator:
forkIO :: IO a -> IO ThreadId

Like conventional parallel programs, a Concurrent Haskell pro-
gram is (by design) non-deterministic, because of the unpre-
dictable interleaving of thread executions.

Performance. A long-standing claim of the functional program-
ming community has been that the absence of side effects
makes it possible to harness the power of multi-processors,
without changing the semantics of the language at all. In prin-
ciple one may extract parallelism automatically — for example,
to compute e1 + e2 we may evaluate e1 and e2 in parallel —
but it is extremely difficult to ensure that the granularity of such
sub-computations is large enough. In practice, attention has
focused on using programmer annotations to identify promis-
ing sub-computations. The simplest such annotation is the par
combinator, used by Glasgow Parallel Haskell (GPH) [24]:
par :: a -> b -> b

The idea is that evaluating (par e1 e2) first adds e1 to a pool of
work available for unemployed processors, and then continues
by evaluating e2 [23]. In contrast to Concurrent Haskell, adding
par annotations cannot affect the result of the program – that is
why par is such an attractive way of exploiting parallelism.

It makes perfect sense to run a Concurrent Haskell program on a
uni-processor, and GHC’s standard distribution does exactly that.
To keep things clear, we call this “Uni-GHC”. Our goal in this paper
is to extend Uni-GHC to work on shared-memory multi-processors
as well: SMP-GHC.

Once that is done, adding par is relatively easy, because many
of the underlying mechanisms (threads, scheduling, mutual exclu-
sion) are the same for both Concurrent and Parallel Haskell. At
the time of writing, we have not yet implemented par. However, it
makes perfect sense to use forkIO to spawn explicitly-concurrent
computations for the purpose of performance; the purity of the lan-
guage makes it much easier to see where these threads may interact,
and the STM makes it easy to synchronise them correctly where
they do.

2.2 Threading model in Uni-GHC

Concurrent Haskell is designed to scale to applications involving
hundreds or thousands of threads of execution, even on uniproces-
sor machines. Consequently, to make threading lightweight, Uni-
GHC multiplexes Haskell threads onto a single OS thread, called
a worker-thread. A worker thread only switches between Haskell
threads at carefully controlled points, such as explicit yields, in-
vocations on synchronisation primitives, or periodically on storage
allocation.

GHC also supports interaction with native code – both calls
from Haskell code into functions imported from native code, and

calls from native code into functions exported from Haskell. This
adds two complications to the threading model. Firstly, if a native
call blocks, then it is necessary to create a new (OS) worker-thread,
so that progress can be made with other Haskell threads. Secondly,
a Haskell thread can be marked as bound [15], which means that a
dedicated OS thread is reserved for it – this may be needed when
interacting with external code that uses native per-thread storage.
However, in Uni-GHC, although there are multiple OS threads only
one of them is ever executing Haskell code at any one time.

2.3 Towards SMP-GHC

Unfortunately, developing SMP-GHC is not simply a case of cre-
ating multiple worker threads to run Haskell code in parallel on
separate CPUs: the assumption of single-threaded execution per-
vades the Uni-GHC runtime system. Instead, we must be examine
all of the state accessed by a worker thread while running Haskell
code and either (a) replicate it for each worker, or (b) ensure that it
is accessed in a safe, synchronised way so that multiple OS worker
threads do not confuse each other.

To do this we use the notion of a capability. A capability holds
all of the private state that a worker needs in order to execute
Haskell code – for instance, as we see below, each capability has
its own allocation area.

A worker thread must hold a capability in order to execute
Haskell code and so the supply of capabilities serves to control the
level of parallelism that the runtime system can achieve. Uni-GHC
can then be seen as a degenerate case in which there is only a single
capability and consequently only a single worker thread executing
Haskell code; SMP-GHC is the more general case where there may
be multiple capabilities, usually one for each available CPU.

Many kinds of shared state are straightforward to deal with:

1. Immutable objects, such as constructor cells in the heap, can be
shared directly without synchronisation.

2. Mutable objects (IORefs, MVars, TVars) are all heap objects
and hence are globally shared; as we discuss in Section 5 we
must make these objects safe for concurrent access by multiple
worker threads.

3. The run-queue, along with other scheduler data structures, re-
mains globally shared between all of the worker threads. The
queue is protected by a lock that must be held when manipu-
lating it. Each worker-thread that holds a capability proceeds
by taking a runnable Haskell thread from the run-queue, run-
ning it for a while, returning it to the run-queue, picking an-
other thread, and so on. One could imagine a less centralised
implementation of the run-queue, but this simple design does
not form a bottleneck on today’s machines, so we have not pur-
sued this.

4. Each capability has its own private allocation area, or nursery,
so that allocation can proceed without expensive, per-object
synchronisation. Nurseries are expanded by memory supplied
from a global block allocator.

5. The remembered set, used by the generational garbage col-
lector, is globally shared. It could easily be replicated per-
capability, but in most cases updates to it are rare and so the
overheads of synchronised access are not high.

In short, almost everything is either replicated in each capability
(e.g. the allocation pointer), or used exclusively by one capability
at any instant in time (e.g. a given Haskell thread’s stack), or is
immutable (e.g. a constructor cell), or is seldom mutated (e.g. the
run queue, or an MVar).

Unfortunately there is one big exception to this happy story:
thunks. In a lazy language, many thunks (or suspensions) are allo-
cated, and later evaluated. When evaluation of a thunk is complete,

PayloadHeader

Code

thunk_234

Info
Table

PayloadHeader

thunk_234

Thread
Stack

update

PayloadHeader

IND

Value

PayloadHeader

Code

thunk_234

Info
Table

Result Word

(a) An unevaluated thunk
is a heap object
containing a header
which points to thunk’s
evaluation code, and a
payload containing values
for its free variables.

(b) A thread enters the thunk
by pushing a new update
frame onto its stack and
executing the thunk’s code.
The code accesses the free
variables via the reference
from the update frame.

(c) After evaluation, the
thunk is updated to hold
the result so it is available
directly in the future
without re-evaluation.

(d) In SMP-GHC, we add
an extra result word to the
thunk, between the header
and the payload.

Figure 1. Thunk evaluation in Uni-GHC (a)–(c), and the new thunk format used in SMP-GHC (d).

it is overwritten with (an indirection to) its value, so that subsequent
evaluations of the same shared thunk do not repeat the work of eval-
uating it. This allocate/evaluate/update sequence is in the inner loop
of almost any Haskell program, and so it must be done efficiently.
Our solution to this challenge is the main technical contribution of
the paper, tackled in Section 3 and then refined in Sections 4.

2.4 Garbage collection

In our current implementation, when memory is exhausted, all
worker-threads stop work, and then a single OS thread performs
garbage collection. This is a stop-gap measure; clearly we would
like parallel garbage collection. That should not be too hard; many
techniques exist [5] and they impose no new overheads on the
mutator threads. Furthermore, the benefits of parallel GC would
be available even to single-threaded programs, provided multiple
CPUs are available. Beyond that, concurrent garbage collection
(concurrent with mutation, that is) might seem attractive, but it
imposes quite serious new overheads on mutation [11].

3. Lock-free thunk evaluation
A thunk is a heap object that represents an unevaluated expression
in the program. The problem with evaluating thunks in parallel is
that although the computation performed by evaluating a thunk is
logically side-effect free, the actual process of evaluating it involves
updates to the shared heap – these updates are crucial for efficiency
because they prevent the same thunk from being re-evaluated.

The structure of a thunk object is shown in Figure 1(a); it
consists of a header word and a variable-sized payload. The header
word points to the thunk’s info table and its entry code. The payload
contains pointers to the free variables of the expression represented
by the thunk (perhaps themselves other thunks). The info table
describes the layout of the heap object to the garbage collector.

In Uni-GHC, thunk evaluation proceeds in the following way:

1. A thread that needs the value of the thunk enters it by loading
a pointer to the thunk into a register and jumping to the entry
code for the thunk.

2. The entry code for the thunk does the following:
• It pushes an update frame on the stack.
• It evaluates the expression represented by the thunk.

An update frame comprises two words: a pointer to the thunk
to be updated, and a return address, update, pointing to a run-
time system routine that will update the thunk when execution
returns to this frame. This is shown in Figure 1(b).

3. When the computation of the expression is complete, the com-
puted value (always another heap object) is put in a register, and
control is transferred to the topmost return address on the stack,

in this case update. The update code overwrites the original
thunk with an indirection to the value, so that the next time
its value is required, it doesn’t have to be recomputed, and the
value computed the first time can be returned. This is shown in
Figure 1(c).

An indirection is a two-word heap object. Like all heap
objects, its header word IND points to executable code, while
the second word is the payload. The code for an indirection
simply enters the payload object (just as in Step 1 above).
This design means that a thread does not need to explicitly test
whether a thunk has already been evaluated when it enters it:
it either proceeds with evaluation, or enters the IND code and
retrieves the existing result.

3.1 A bad idea: locking thunks

In a parallel world, two threads might attempt to evaluate the same
thunk at the same time. Since evaluating a thunk can require an
unbounded amount of work, duplicate evaluation is clearly a Bad
Thing. The obvious solution is to lock the thunk while it is under
evaluation, using either a standard mutex supplied by the OS, or
by rolling our own locking implementation, for example doing
compare-and-swap (CAS) on the header word of the thunk.

The trouble is that thunk evaluation is extremely common, and
CAS instructions are extremely expensive – at least two orders of
magnitude more expensive than ordinary instructions (and the ratio
is getting worse). This matters: in Section 6 we show that adding
two CAS instructions to every thunk’s evaluation (one in the entry
code and one in the update code) increases execution time by an
average 50% with a maximum of 300%. In an earlier complete
(but now-bit-rotted) implementation, we observed execution time
increasing by 100% when locking thunks. We consider this to be
unacceptable: even if there is plentiful parallelism, you would need
an entire extra processor just to get the same performance that our
sequential implementation has on a single processor.

In short, full thunk locking is unreasonably expensive.

3.2 A good idea: lock-free thunks

The key idea of this paper is this: evaluate thunks with no locking
instructions whatsoever. This lock-free approach is based on the
following observations:
1. Because a thunk always represents a pure expression, semanti-

cally it doesn’t matter if two threads evaluate the same thunk,
because they will both return equivalent values. It doesn’t mat-
ter which one “wins”, since the values will be equivalent – any
difference will be unobservable by the program (but see Sec-
tion 3.5).

2. Many thunks are cheap, so duplicate evaluation often doesn’t
matter.

3. Concurrent evaluation of a thunk by two different threads is
rare.
If these observations are true, then all we need do is (a) ensure

that concurrent lock-free evaluate/update operations on a thunk do
not confuse each other, (b) narrow (but not close) the window
during which it is possible for two threads to begin concurrent
evaluation of the same thunk and (c) provide some mechanism to
recover from the rare case of concurrent evaluation of an expensive
thunk.

The devil is in the details however. We tackle (a), which con-
cerns correctness, in this the rest of this section, leaving (b) and (c),
which concern efficiency, for Section 4.

3.3 The first enter/update race

The first thing we must do is ensure that if two threads succeed in
entering the same thunk, they do not trip over each other. Although
the expression being evaluated is pure, the update step at the end
of evaluation rewrites the thunk’s header and the first word of
its payload. The first concern is that one thread might complete
evaluation and overwrite the thunk with an indirection to the result,
while the other thread is still reading the payload of the thunk.
Consider this evaluation:

Thread A Thread B
1. Jump to thunk’s entry code Jump to thunk’s entry code
2. Load free variables
3. Evaluate thunk
4. Return to update frame
5. Update thunk with indirection
6. Load free variables

At step (5), the pointer to the result of the thunk has overwritten
one of the free variables, so in step (6), thread B reads an invalid
value for the first free variable and proceeds with evaluation using
this bogus value.

The solution to this race is straightforward: we extend the size
of the thunk by one word, adding a result word before the first free
variable. This new structure is shown in Figure 1(d). Extending the
size of thunks by one word is not trivial in terms of its impact on
performance, but it is acceptable; we present some measurements
in Section 6.

3.4 The second enter/update race

The second problem we must address occurs if one thread is enter-
ing a thunk just as another thread is updating it. This is because the
update step involves two separate writes to memory, one to store
IND in the header word and one to store the result itself: the thread
entering the thunk may see one write but not the other.

For instance, suppose that the updater writes to the header word
first and then stores the result:

Updating thread Another thread
1. Write IND
2. Read IND
3. Read bogus result field
4. Write result field

It is straightforward to prevent this problem on Intel and AMD
x86 processors. We simply need to write the update function so
that the result is stored first and the header second: even in a
multi-processor system with caches, write buffers, and so on, the
hardware guarantees that a thread that sees the update to the header
will see the result.

The situation is more complex on other processor architectures:
processors vary in exactly what guarantees they make when exe-
cuting code where memory is being shared without using locks.

Typically, some form of memory fence instruction is needed to con-
strain the order in which unsynchronised memory accesses take
place [1, 26]. Unfortunately these memory fences are often as slow
as atomic compare and swap operations which, as we saw above,
are unacceptable to add to the fast paths through thunk entry and
update. There are two problems to consider: whether writes per-
formed by the updater may be re-ordered by the hardware, and
whether the reads performed by another thread may be re-ordered.

If the processor allows writes to be re-ordered then unfortu-
nately we do need a memory fence before executing the update
code for the thunk. This ensures that data structures reachable from
the result will be visible to other threads that use the result. Of
course, memory fences are needed for the same reason in other lan-
guages, for example to ensure that initial field values written in a
constructor are seen correctly by other threads.

If a processor allows reads to be re-ordered within the memory
subsystem then we can still avoid adding a barrier to the entry
code by exploiting the fact that result of evaluating a thunk is
always a non-zero pointer into the heap. If we ensure that the result
field is initialised to zero, and that this initialisation is visible to
all processors, then if a thread enters an indirection closure and
sees zero then it simply busy-waits or yields until the result reaches
memory.

3.5 UnsafePerformIO

So far we have assumed that a thunk represents a pure compu-
tation, with no side effects whatsoever. GHC, however, supports
unsafePerformIO, a primitive with type IO a -> a [18]. As its
name suggests, it is unsafe, but it is occasionally useful. An exam-
ple of a safe use would be to wrap a foreign call to C function, that
was in fact pure.

However, less savoury uses of unsafePerformIO could be
in big trouble if they could be (unpredictably) executed twice if
parallel threads enter the same thunk. We have not tackled this yet,
but the appropriate thing is probably to provide a combinator

justOnce :: a -> a

that does proper locking on its thunk argument. Ennals encountered
just the same issue in his work on adaptive evaluation [4].

3.6 Summary

To summarise, we can perform correct, lock-free thunk evaluation
as follows on Intel and AMD x86 processors:
• Every thunk contains a result word, to receive the updated

value,
• When updating, store the result before writing the indirection

header word.
We want performance as well as correctness, however. The follow-
ing section discusses how to recover from the situation when two
threads are evaluating the same thunk, and how to narrow the win-
dow during which two threads may start to evaluate the same thunk.

4. Recovering from duplicate evaluation
Most thunks are cheap: they are entered, evaluated, and updated
relatively quickly. For these thunks we want lock-free evaluation,
and we are prepared to risk duplicating their work in the unlikely
case that two threads evaluate them concurrently – after all, they are
cheap. In contrast, for expensive thunks the overheads of locking
are quite acceptable. In this section we describe how to lock only
expensive thunks.

4.1 The key (old) idea: black-holing

Recall that the stack of a Haskell thread contains update frames,
each of which points to a thunk that the thread is evaluating. We can

therefore arrange that periodically, each thread scans the update
frames in its stack, and uses a CAS instruction to gain exclusive
access to the thunk. We call this “claiming the thunk”.

In more detail, to claim a thunk, the thread (let’s call it A) uses
a CAS instruction to swap the header word with BLACKHOLE. The
swapped-out contents of the header word could be one of three
things:
• thunk_234 (the original header word of the thunk): Thread

A has successfully claimed the thunk, leaving it as shown in
Figure 2(a).

• BLACKHOLE: another thread B has already claimed the thunk.
• IND: another thread B has already updated the thunk.

Suppose for the moment that Thread A succeeds in claiming all
the thunks pointed to by its update frames, after which it resumes
normal evaluation. Now suppose that another thread B tries to
enter one of those thunks; it will land in the code for BLACKHOLE
(remember, every header word is a code pointer). This code must
arrange for Thread B to block, waiting for Thread A to complete
evaluation of the thunk. We discuss the mechanism for blocking in
Section 4.2.

Suppose that Thread A finds an update frame while scanning its
stack pointing to a thunk that already contains IND or BLACKHOLE
(the latter two cases above). Then everything on the stack subse-
quent to (i.e. younger than) this update frame represents redundant
computation. Hence, we want to truncate A’s stack to this update
frame, and leave Thread A in a state such that when it resumes ex-
ecution it will enter the thunk as if for the first time. If it enters
a BLACKHOLE, it will block, as above; but it the thunk is an IND,
it will simply find the value. If several update frames on A’s stack
have IND or BLACKHOLE thunks, we want to truncate the stack to the
deepest (i.e. oldest) one. The operation of “truncating A’s stack” is
a little trickier than it sounds, as we discuss in Section 4.3, but the
effect is to abort A’s redundant computation.

Note that the fact that Thread A succeeds in claiming a thunk
does not guarantee that no other thread B is evaluating it, because
B might not have gotten around to trying to claim it yet. Indeed, B
might even get all the way through to updating it (if the thunk is
cheap). But if the thunk takes a long time to evaluate, B will try to
claim it, and will back off then.

Since Thread A scans its own stack repeatedly, it must take care
not to scan the same update frame more than once, because the
second time it, of course, will find BLACKHOLE, put there during
the previous scan! This is easily arranged – by marking the update
frame, with a bit or by change the update code pointer – and has
the side benefit of saving work: once we find a marked update
frame, we can stop scanning, and no frame is scanned more than
once.

The idea of overwriting a thunk with a “black hole” while
the thunk is being evaluated is far from new. It is useful even
in a sequential implementation to plug space leaks [10], and to
detect certain sorts of infinite loops. Because it is deferred until a
stack-scan is performed, we sometimes call it lazy black-holing.
We can also use an eager, lock-free, variant of black-holing to
dramatically reduce the window in which duplicate evaluation can
occur (Section 4.4).

4.2 Blocking

When a (Haskell) thread enters a black hole – that is, a thunk with
BLACKHOLE as its header word – we want to arrange to block the
thread until the thunk’s evaluation is complete. In Uni-GHC the
blackhole entry code places the thread on a queue attached to the
thunk itself; the update code (executed when a thunk is updated
with its value) checks for waiting threads and wakes them up.
Another new header word, BLACKHOLE_BQ identifies black-holed

thunks which form the head of queues of blocked threads. This is
shown in Figure 2(b).

In SMP-GHC, this technique runs into difficulties. Some care
must be taken to co-ordinate multiple threads that block simulta-
neously on the same thunk, although here we use proper locking
instructions, since blocking is rare; and we would probably need
yet another word to contain the (almost invariably empty) blocking
queue. The worst thing, though, is that the update code, which up-
dates the thunk with its value, must check for blocked threads, and
it is hard to see how to make that lock-free.

To avoid these problems SMP-GHC abandons the Uni-GHC
approach. Instead, we keep blocked threads in a separate global
queue. The entry code for BLACKHOLE places the thread on the
global black-hole queue as shown in Figure 2(c). Note that each
thread points back to the black hole on which it is blocked – threads
on the black-hole queue are checked at regular intervals to see
whether the computation they are waiting for is complete, so they
can be woken up.

Of course, we cannot avoid locking or CAS when updating
the global queue, but unlike the fast-path code on thunk entry
and update, we aren’t too concerned about atomic actions here
because we expect blocking on black holes to be relatively rare
(see measurements in Section 7.5). The queue could be made per-
capability in any case.

The global queue brings some new problems. Firstly, traversing
the queue is O(n), so we must not traverse it too often. Our current
implementation traverses it at least at every GC (when every thread
is touched anyway), and also when there is an idle CPU. Secondly,
blocked threads don’t get woken up as promptly as in the previous
scheme. It’s possible that a thread might get unfairly starved if
it often blocks on BLACKHOLEs. Our implementation doesn’t do
anything to mitigate this, but we don’t expect it to be a serious
problem in practice.

4.3 Truncating the stack

It is tempting to think that when we truncate a stack we can simply
discard the truncated portion wholesale. After all, there are no
effects to undo – this is a functional program! However, this stack
chunk may itself contain update frames for other thunks under
evaluation. Some of these thunks may be visible to other threads,
so we cannot simply discard this stack chunk and the work it
represents, because that would leave these shared thunks in a semi-
evaluated state (probably BLACKHOLEs), and the next thread to enter
one of them would block forever.

This is not a new problem. Exactly the same issues arise when-
ever a thread’s execution must be abandoned for some reason:
• GHC supports asynchronous interrupts, which allow one thread

(or an external source) to interrupt another [16]. The interrupted
thread abandons its stack until it finds an exception handler.

• In our implementation of Software Transactional Memory
(STM), we periodically “validate” the thread’s transaction log,
to check that it has seen a consistent view of memory; if not,
we abandon the transaction and re-execute it [9].

The requirement, then, is to ensure that the black holes pointed
to by the update frames of an aborted stack chunk are left in a
sensible state. We could consider reverting each of the black holes
back to its unevaluated state, but that would require keeping the
original state of the thunk until its evaluation is complete; recall that
one of the purposes of black-holing is to eliminate the space leak
caused by retaining the free variables of a thunk under evaluation.
Moreover, reverting the thunk would throw away the work that has
been performed on it so far.

Fortunately a better solution is known [20]. The trick is to save
the stack onto the heap in such a way that if any of the thunks

PayloadHeader

BLACKHOLE

PayloadHeader

BLACKHOLE_BQ
Thread Thread

PayloadHeader

BLACKHOLE_BQ

Thread Thread

blackhole_queue

(a) In Uni-GHC a thunk is
black-holed by updating
its header word.

(b) In Uni-GHC, lists of
blocked threads are kept for
each thunk.

(c) In SMP-GHC, a global
list is used to avoid races.

Figure 2. Thunk black-holing in Uni-GHC (a)–(b), and in SMP-GHC (c).

are entered again, the saved stack is reconstructed on the entering
thread’s stack, and the evaluation of the thunk resumes where it
left off. We call this “freezing” the state of the evaluation. A nice
property is that if the frozen thunks are not shared with any other
threads, then the garbage collector will quickly throw away the
frozen state.

Uni-GHC already implements this strategy, and we simply
adopt it for SMP-GHC. No new concurrency issues arise, because
updating the black hole with the suspended stack is just like up-
dating the black hole with its final value (except, of course, that
the result field points to a new thunk, representing the frozen stack,
rather than to an immutable value).

4.4 Narrowing the window using grey-holing

So far we have assumed that until a thunk is black-holed by the
claiming operation, it remains unmodified, so there is quite a wide
window in which two threads might begin evaluating it simultane-
ously. It is easy to narrow the window: as soon as a thread enters the
thunk, it writes GREYHOLE into the header, without taking any locks.
The entry code for GREYHOLE is the same as for BLACKHOLE, so that
any other thread entering the thunk will now block (Section 4.2).
Of course, the window is not closed entirely: when one thread has
read the header of the thunk, but not yet written GREYHOLE, a sec-
ond thread could also read the header word and begin a duplicate
evaluation. But now the window is only one instruction wide.

Why not simply write BLACKHOLE? Because we need to use
a different header word so the lazy black-holing mechanism of
Section 4.1 can distinguish (a) when it has successfully claimed
exclusive access from (b) when it comes across a thunk that has
been claimed by another thread.

However, since a thunk is now mutated twice in a lock-free way,
once to grey-hole it and once to update it with its final value, grey-
holing introduces a new race condition:

Thread A Thread B
1. Enter thunk’s code Enter thunk’s code
2. Write GREYHOLE header
3. Evaluate thunk
4. Write result field
5. Write IND header
6. Write GREYHOLE header
7. Evaluate thunk

This race does not threaten correctness. All that happens is that
Thread B will evaluate the thunk all over again. Notice that the
race occurs because Thread A completes all of the thunk’s evalu-
ation between two instructions in Thread B’s execution. Therefore
the more expensive that evaluation is, the smaller the chance that

Thread B will be asleep during the entire evaluation by Thread A.
So it is quite acceptable simply to ignore this race.

4.5 Duplicate unshared thunks

Even if we can guarantee to catch any duplicate evaluation of
a shared thunk within a bounded amount of time, this does not
unfortunately place a bound on the amount of duplication we can
expect. For example, consider the following thunk z:

z = let x = ... expensive ...
in Just x

z is very cheap to compute, but its value contains an expensive-
to-evaluate thunk x. If the evaluation of z is duplicated, then there
will be multiple results each pointing to a different version of x.
The runtime cannot detect that the two versions of x are equivalent,
so the evaluation of x will be completely duplicated.

The best we can do in our lock-free design is to make this
scenario highly unlikely to occur. Grey-holing already significantly
reduces the possibility that evaluation of z will be duplicated, but
we might not want to use grey-holing because of the performance
penalty.

A cheaper technique is to check the header word of the thunk
in the update code: if the header word is already IND, then we
can return the existing result rather than the result we have just
computed. This trick isn’t foolproof because two updates can still
happen simultaneously, but if successful, it does recover the sharing
at the expense of an extra read during update.

To date, we haven’t implemented this technique or measured its
overhead. However, we expect the overhead to be low: reading the
header word in the update code doesn’t increase memory traffic,
because the header word is being written to anyway, so it needs
to be in the cache. In fact, Uni-GHC already performs this read
because it checks for BLACKHOLE_BQ on update. It does represent
a control flow decision based on the results of a memory read, so
there might be a pipeline stall, but we expect the majority of thunks
to be cheap to evaluate and therefore still in the cache when the
update code runs.

It takes two physical processors to duplicate work, and in that
case there are two physical processors to excecute the duplicates,
so one might wonder whether the (highly-unlikely) worst case is to
slow down to the speed of a uni-processor. Sadly, this is not quite
right, because one of the duplicate threads might be de-scheduled,
and the two processors might accidentally duplicate more work
in the other — and then do the same in the de-scheduled thread.
It seems that there is no hard upper bound, but that the chances
of repeated duplication decrease exponentially with the number of
duplicates. This problem does not keep us awake at night.

4.6 Summary

The runtime has complete freedom to decide how frequently to
scan the update frames on a thread’s stack. One plausible possibility
would be to scan the stack when the thread is descheduled; that is,
when it blocks, runs out of allocation area, or its time-slice expires.
Only active threads need their stacks scanned at all; sleeping or
blocked threads need no such attention. However, if grey-holing is
being used, it is extremely unlikely that two threads will manage to
squeeze through the one-instruction window, and thereby evaluate
the same thunk, so it probably makes sense to scan the stacks very
seldom.

Suppose that each Haskell thread scans its stack every T ticks.
Then the scheme guarantees that any thunk whose evaluation takes
longer than T ticks will be claimed by a unique thread; and any
other threads that manage to squeeze into the one-instruction win-
dow, and thereby evaluate the thunk concurrently, will waste at
most T ticks each.

5. Atomic blocks in SMP-GHC
In Sections 3 and 4 we showed how to support safe parallel evalua-
tion of pure functional code without having to introduce per-thunk
locking. We now turn to the problem of impure multi-threaded code
where threads communicate with one another through explicit up-
dates to shared memory. As with parallel thunk evaluation, we want
the underlying primitives to be safe, fast and scalable.

Our recent work in Uni-GHC provides atomic memory trans-
actions as an abstraction for composable inter-thread communi-
cation [9]. These are built using a software transactional memory
(STM) [21] which allows a set of accesses to a shared mutable heap
to be performed atomically.

The STM is implemented using optimistic concurrency control
in which an atomic block executes building up a Haskell-thread-
local log of all of the transactional variables (TVars) that it has
read from and, in the case of updates, the value that it wants to
write. At the end of the atomic block, the thread invokes a commit
operation that iterates over the log checking that the TVars still hold
the values seen in them: if so then the updates are written, if not the
log is discarded and the atomic block is re-executed.

This scheme is relatively straightforward to implement in Uni-
GHC because only one thread can be evaluating Haskell code at
any time, so there is no interleaving between different commit
operations. The implementation in SMP-GHC is more intricate but
largely employs the same techniques that we have used in earlier
work on STMs for multiprocessor systems [8, 6].

The basic idea is to implement per-TVar locks using atomic
CAS instructions. As usual, we implement these locks by overload-
ing the current_value field in a TVar: a single CAS instruction
thereby serves to acquire a lock and to check that the TVar held
the value expected there by the transaction. However, notice that
these locks are held only when committing a transaction and not
throughout its execution – contention is therefore expected to be
rare.

We avoid locking altogether for TVars that have been read but
not updated. This aids scalability when dealing with shared data
structures that are often read but seldom updated: a read-only trans-
action can operate without introducing costly contention in the
memory hierarchy. As in earlier work, we do this by adding a
version field to each TVar that is protected by the TVar’s lock
and is updated on commit. During a commit operation we make
two passes over the TVars that have been read but not updated –
the first pass records the versions seen in each of them, and the
second pass checks that none of these versions has changed. This
guarantees that we see a consistent view of the set of TVars. Fig-

1. Lock tvars

for each transaction log entry:
if the entry is an update:
try to lock the tvar
if successful:

continue
else:

unlock tvars and abort
if the entry is a read:
record tvar’s version number

2. Check reads

for each transaction log entry:
if the entry is a read then
re-read the tvar’s version number
if this matches the one we recorded:

continue
else:

unlock tvars and abort

3. Make updates

for each transaction log entry:
if the entry is an update:
store new value to tvar, unlocking the tvar

Figure 3. Committing a transaction, allowing non-conflicting up-
dates and reads to proceed in parallel.

ure 3 summarises this algorithm; Fraser provides a more detailed
description in the context of an STM library for C [6].

Although this overall structure is conventional, there are three
novel aspects of our STM design. Firstly, unlike earlier STMs, we
do not aim to make the commit operation lock-free – that is, if
an OS thread is pre-empted mid-way through a call to commit then
other OS threads will be unable to perform conflicting updates until
the first thread is rescheduled. Lock-free behaviour is important in
languages with an unconstrained number of OS threads operating
without co-operation from the scheduler. However, in SMP-GHC,
the number of OS threads is set to match the number of available
CPUs, and scheduling between Haskell threads is under the control
of our scheduler. This makes pre-emption during commit opera-
tions extremely unlikely in SMP-GHC.

Secondly, the fact that we are not lock-free means that we
must avoid deadlock when locking TVars during a commit. We
do not want to rely on sorting the entries in the transaction log
because of the work that sorting entails [14], and the fact that
contention for these locks is rare. Instead we simply abort and re-
execute a transaction if we fail to acquire a lock during commit.
However, if contention is more frequent, then we could instead
release any locks acquired so far and then proceed to sort the
transaction log before reacquiring the locks. This may reduce the
number of needless aborts while still avoiding the need to sort the
transaction log in every case. In practice the rarity of contention
for TVar locks means that we have not needed to explore this more
complicated implementation.

Finally, a novel feature of Concurrent Haskell’s STM is that it
supports a retry operation: conceptually, if a thread calls retry
then its current transaction is abandoned with no side effects and
then re-executed from scratch. However, there is no point in ac-
tually re-executing the transaction until at least one of the TVars
read during the attempted transaction is written by another thread.
This observation is exploited by using a per-TVar queue of Haskell
threads that are waiting for an update to be made. A retrying
thread adds itself to the queue attached to each of the TVars that

Program Code size Runtime
anna +8.0 +39.1
cacheprof +7.5 +74.4
circsim +5.3 +88.7
compress +4.7 +14.5
exp3 8 +4.3 +320.0
fft +5.1 +30.5
fibheaps +4.4 +50.3
fulsom +7.3 +50.1
sched +4.3 +78.5
wang +5.2 +35.3
Min +3.2 -4.5
Max +8.0 +320.0
Geometric Mean +4.9 +53.9

Figure 4. Overhead of using CAS

the transaction read, and the commit operation re-awakens any
thread waiting on a TVar written by the commit [9]. We make these
queues safe for SMP-GHC by re-using the per-TVar lock to pro-
tect the wait queues. A thread that is about to wait must acquire
all of the per-TVar locks it needs before adding itself to their wait
queues: this prevents lost wake-up problems resulting from concur-
rent commit operations to those TVars.

6. Measuring the overhead of parallel execution
In this section we measure the overhead imposed by the measures
we have taken to allow parallel execution of Haskell code by mul-
tiple threads on a shared heap.

6.1 Methodology

We used the Glasgow Haskell Compiler version 6.4 plus modifi-
cations (corresponding to the CVS sources around the date of 31
May 2005), running on Linux. Our measurements are taken across
all 88 programs in the nofib benchmark suite [17], which range
from micro-benchmarks such as tak and rfib, to “real” programs.
For example cacheprof is a program for automatically translating
assembly code to insert instructions for dynamic cache profiling,
compress is an implementation of LZW compression, and hidden
is a program for hidden-line removal in 3D rendering.

Although we measured all 88 programs, our tables only show
a subset of the results. Nevertheless, the averages and min/max
figures do take into account the whole suite. When taking the
average of percentages, we give the geometric mean. However,
to reduce spurious figures, any program that ran for less than 0.5
seconds on our dual 2.4GHz Intel Xeon was discounted from the
aggregate figures.

Runtimes are wall-clock times, taken as the average of 5 runs.

6.2 Overhead of atomic instructions

Our first experiments looked into the total cost of adding a single
un-contended compare-and-swap instruction to the code for every
thunk entry and to the update code. Although this does not imple-
ment a proper lock on the thunk, it suggests the kind of performance
that would be achieved by a basic lock-based scheme.

Figure 4 gives the measurements. We found that simply adding
atomic compare-and-swap instructions to the thunk entry and up-
date imposes a significant performance penalty: from 0-300%
slower, with the average being about 50% slower. The small
benchmarks (tak, listcopy, exp3_8) show the most extreme
behaviour, whereas larger programs such as anna and fulsom dis-
play behaviour closer to the average.

It might be feasible to construct a locking implementation
around a single CAS instruction per evaluation rather than the two

Program Code size Allocations Runtime
anna +0.7 +16.9 +6.2
cacheprof +1.1 +17.3 +0.7
circsim +1.7 +17.4 +6.6
compress +2.3 +1.4 +3.4
exp3 8 +2.0 +20.0 +22.3
fft +1.5 +12.2 +11.7
fibheaps +1.9 +9.5 +1.9
fulsom +1.2 +16.6 -0.8
sched +1.9 +12.8 +1.6
wang +1.5 +15.2 +34.3
Min +0.7 +0.0 -8.2
Max +3.3 +24.5 +41.0
Geometric Mean +1.9 +12.4 +5.8

Figure 5. Lock-free implementation

we have measured here2 But even halving the penalty we have ob-
served still leaves a prohibitively expensive overhead, and a real
locking implementation will need to do more than just a CAS in-
struction.

6.3 Overhead of the lock-free implementation

Figure 5 gives measurements of the sequential overhead for SMP-
GHC, and described in Sections 3-5.

Our baseline figures were measured on a system that did (lazy)
black-holing, but not (eager) grey-holing. The black-holing imple-
mentation is incomplete compared to that described in Section 4,
in that it does not use CAS to black-hole the thunk, and makes no
attempt to detect or recover from duplicate evaluation. This short-
coming should only worsen performance, because duplicate evalu-
ation is possible, although unlikely. (The performance boost from
not using CAS during black-holing will be very small, because lazy
black-holing is, by design, not the inner loop.) Concerning mem-
ory ordering (Section 3.4), the Intel Xeon processor on which we
ran the benchmarks has strong guarantees about memory ordering,
which means that a processor can never see the writes performed
by an update occur out-of-order, so it is neither necessary to zero
the result word nor to add memory fence instructions.

We can see that the overhead of the lock-free implementation
is around 6% of runtime, which is significantly lower than the
overhead of using atomic compare-and-swap instructions.

However, there are still a few outliers in the benchmark suite:
treejoin takes a 41% performance hit when compiled for parallel
execution, for example and wang a hit of 34%. A combination of
factors is at work in these cases. Firstly, they perform an unusually
large number of updates to thunks that are in the old generation.
This creates contention for the lock which currently protects the
GC’s remembered set – as we mentioned earlier, we intend to add
per-capability remembered sets so that we can remove this lock.
Secondly, these tests are reasonably short running and perform only
a small number of old-generation garbage collections. Execution
finishes just before a further garbage collection would occur and
so the additional storage space required for result words fills the
heap, causing a further old-generation collection. Aside from these
factors, the performance is close to the mean.

6.4 Grey-holing

We also measured the impact of adding grey-holing (sometimes
also called eager black-holing) to the lock-free implementation.

2 Note that CAS-free lock reservation schemes, such as Kawachiya’s [12],
rely on repeated acquisitions and releases of the same lock: thunks are only
‘locked’ once.

Program Code size Runtime
anna +1.3 -1.5
cacheprof +0.9 +0.3
circsim +0.9 -1.7
compress +0.6 +1.1
exp3 8 +0.6 +6.6
fft +0.7 +3.8
fibheaps +0.6 +17.0
fulsom +1.1 +2.0
sched +0.6 +53.5
wang +0.8 -0.4
Min +0.3 -5.2
Max +1.3 +53.5
Geometric Mean +0.7 +2.1

Figure 6. Lock-free implementation with grey-holing

The results are given in Figure 6, where the baseline is the system
measured in Figure 5.

While the code-size overhead is almost negligible at less than
1%, the effect on the runtime is sometimes dramatic: one program,
sched, showed a 53% increase in runtime. We double-checked the
measurement and it is correct. Theoretically, writing to the thunk’s
header in the entry code for the thunk could cause cache-thrashing,
because the thunk would not otherwise be written to at that point
during execution; we don’t know whether in fact this is the cause
of the performance drop for sched, however.

7. Case study: parallelising GHC
In this section we describe a case study using our shared-memory
parallel implementation of GHC, and demonstrate a real speedup
achieved for a distinctly non-trivial program, with only minor
changes to the source code of the application.

The application we chose to parallelise is GHC itself, for two
reasons:

• It is compute-bound, but has a natural granularity for paral-
lelism: compiling modules in parallel. Parallelisation is not
completely trivial, however, since there is some shared state be-
tween the compilations.

• The authors are already intimately familiar with the architecture
of GHC, so identifying the potential areas of concern for a
parallel implementation was not difficult.

For some time now, GHC has had the ability to compile several
modules in sequence, without having to be restarted between com-
pilations. This is called the --make mode of GHC. There are two
main benefits to using GHC in --make mode:

• Speed: GHC caches information about modules between com-
pilations, so the information is immediately available to subse-
quent compilations without having to be re-read from the disk.
This applies not just to modules compiled in the current ses-
sion, but also pre-compiled modules in libraries; reading inter-
faces for pre-compiled modules such as the Prelude is a sig-
nificant factor in GHC’s compilation time, especially for non-
optimising compilation.

• Simplicity: GHC does the dependency analysis internally, so
only a single command needs to be issued in order to build an
entire program or library. The programmer doesn’t need to be
familiar with any other external tools.

Since a multi-module program often contains subsets of mod-
ules which have no dependencies between them, it is natural to

wonder whether these compilations could proceed in parallel. For
example, in a program with this structure:

A

B C

D

where module A depends on both B and C, and B and C both
depend on D, we could proceed by first compiling D, then compiling
B and C in parallel, and finally compiling A.

Indeed, the Unix make tool already has such a facility: issuing
the command make -j2 will compile the program using at most 2
processes in parallel whenever possible. Inspired by this, we added
a similar feature to GHC’s --make mode.

7.1 The --make compilation engine

In order to explain our parallel implementation, it is necessary to
understand a little about how GHC’s --make mode is structured. A
compilation session proceeds in the following stages:

• Perform a dependency analysis of the modules in the program,
and construct a module dependency graph.

• Flatten the module dependency graph in topological order.
• Compile each module.
• Link the final program to form an executable (this step is omit-

ted for libraries).

The interface to compile a single module is (somewhat simplified):

compile :: ModSummary
-> HscEnv
-> IO (Maybe (ModDetails, Linkable)

where

ModSummary: contains information about the module to be com-
piled, including the filenames of the source file, object file and
interface file.

HscEnv: contains all the information the compiler needs to know
about its environment. Most notably, it contains
HomePackageTable: a mapping from Module to ModDetails,

this mapping contains information about each of the mod-
ules in the current program (ModDetails is described be-
low).

ExternalPackageState: this is a mutable variable, point-
ing to a structure containing information about all the pre-
compiled modules that have so far been inspected. The
ExternalPackageState is basically a cache; when infor-
mation about another module is required, the structure is
extended and the new version written into the mutable vari-
able. GHC in fact reads information about pre-compiled
modules lazily, so in fact ExternalPackageState can be
modified at just about any point during compilation. Infor-
mation is only ever added to the ExternalPackageState,
never removed.

ModDetails: contains information about a single module, includ-
ing the names and types of all functions exported by the module
and definitions of data types, classes and instances. When

optimising, the ModDetails may also contain the definitions
of functions, so that a function can be inlined at its call site in
another module.

When compiling a module, the HomePackageTable must con-
tain information about all the modules on which the current module
depends, directly or indirectly.

The caller of compile, namely the --make compilation en-
gine, is expected to populate the HomePackageTable with the
ModDetails for newly compiled modules before calling compile
again. So the idea is that the HomePackageTable is gradually pop-
ulated as we compile modules, and when the process is complete
we have a HomePackageTable containing ModDetails for all the
modules of the program.

7.2 Parallelising ghc --make

Now, let us consider how we might parallelise this process. One
possibility is to have a compilation supervisor whose job it is to
monitor the state of the compilation graph, and start compilations
when all their dependencies have completed. It would be the com-
pilation supervisor’s job to keep track of the HomePackageTable.

This seems a reasonable approach, if a little heavyweight. For
our experiment however, we chose a simpler, arguably more el-
egant, but perhaps slightly more opaque solution. The idea is to
use concurrency to discover the implicit parallelism in the com-
pilation graph, rather than figuring it out for ourselves. The key
observation is that the compilation graph is just a dataflow graph,
where each node is a compilation that can start as soon as its inputs
are ready. We can implement a dataflow graph straightforwardly
in Concurrent Haskell by forking a thread for each node, and hav-
ing an initially-empty MVar to store the output of each node3. Each
thread waits on the MVars for each of its inputs, so when all of them
are ready it can begin its compilation and store the result in its own
MVar.

We still need to construct the HomePackageTable for each
compilation, and the easiest way to do this is for the HomePackage-
Table to be the data that flows along the edges of the graph:

A

B C

D D���

D���

C���
D���

B���

D���

C���

A���

The thread for each node performs the following steps:

• Perform a readMVar for each of the nodes that the current node
depends on. Each of the readMVars will complete when the
relevant node has been compiled, and its HomePackageTable
is ready.

• Construct the HomePackageTable for this compilation by tak-
ing the union of the HomePackageTables of the dependencies
(duplicate entries can be dropped, because they will be identi-
cal).

• Compile the current module.
• Extend the HomePackageTable with an entry for this module,

and fill the MVar for the current node with this HomePackage-
Table.

3 An STM TVar would be nicer. However, at the time we were implement-
ing this experiment, the parallel STM implementation was not ready.

• Now the thread can exit.

In practice, each node needs to store Maybe HomePackage-
Table, since a compilation may fail. If a node fails to compile,
all the other nodes that depend on it will also fail, but others may
continue to compile. It may be an improvement to this scheme to
terminate the entire compilation session as quickly as possible after
an error is discovered, but we have not implemented this yet.

We have so far assumed that we want to extract as much paral-
lelism as possible from the compilation session, but in fact running
more parallel threads than there are processors can lead to slow-
downs due to contention. So in fact we want to place a limit on the
number of parallel compilations that can be running at any time.
We achieve this using a simple quantity semaphore: each compi-
lation thread waits for a unit from the semaphore before starting
its compilation, and returns the unit afterwards. The initial number
of units in the semaphore is selectable via a command-line flag to
GHC (ghc --make -j3, for example). It is advisable to make the
number of compilation units equal to the number of capabilities in
the parallel runtime, which is in turn equal to the number of real
CPU cores4.

7.3 Shared state in GHC

Having determined our top-level strategy for running parallel com-
pilations, we must now investigate what shared state, if any, the
parallel threads need to access, and how to make that access safe in
a parallel setting.

The most important shared state is the ExternalPackage-
State, a mutable variable which can be updated at virtually any
point during compilation, even from pure code; we treat it as a
cache. If at some point during compilation GHC needs to know in-
formation about a pre-compiled module, the ExternalPackage-
State is first inspected to see whether the interface for that
module has been loaded. If not, the interface is loaded and the
ExternalPackageState is extended with information about the
module.

To make access to the ExternalPackageState safe in a par-
allel setting, we did the obvious thing and replaced the ordinary
IORef mutable variable with an MVar (using an STM TVar is
planned for the future, and we expect to get some improvements
from doing that).

There are a few other items of shared state in GHC, but they all
follow the same kind of usage as the ExternalPackageState.
For example, there is a global dictionary of strings called the
FastString library, which makes string comparison cheap by
assigning unique integers to strings; we had to protect access to
this global dictionary with an MVar.

We also had to fix a bug in the generation of temporary file-
names – the problem here was that the internal mechanism for gen-
erating new temporary filenames wasn’t robust enough in that it
didn’t create the temporary file eagerly, so a second request for a
temporary filename before the file had been created could return the
same filename again. Due to the way GHC uses temporary files this
bug had lain dormant until it was exposed by running compilation
threads in parallel.

7.4 Results

Implementing our parallel version of GHC involved around 400
lines of changes5 in total to the compiler sources. The compiler

4 We haven’t measured whether any benefit can be had by treating an Intel
Hyper-threading virtual CPU as a real CPU for the purposes of determining
how many threads to use.
5 Counting lines added plus lines removed, where an edited line counts as
both a removal and an addition.

consists of around 65,000 lines of non-comment Haskell source, so
the changes represent about 0.6% of the compiler.

We now give some measurements obtained by compiling a few
programs using our parallelised GHC, on a dual Intel Xeon 2.4GHz
machine with plenty of memory, that was otherwise unloaded.

The maximum speedup we could possibly hope to achieve is 2,
because the test machine has 2 CPUs. However, there are several
reasons why the actual speedup will be lower than 2:

• Garbage collection is still single threaded, and takes a not-
insignificant amount of time (20-30% is typical; actual figures
are given with the results).

• A speedup of 2 might not be available due to dependencies be-
tween modules. A program typically has a Main module which
cannot be compiled in parallel with anything else, because it
sits at the top of the dependency graph.

• The dependency analysis phase, which includes pre-processing
of the modules (if any) is not parallelised.

• There is an overhead for compiling GHC itself for parallel
execution. This overhead is small, as we illustrate below.

To test that the parallelism was working properly, we first com-
piled two identical modules simultaneously, changing the name of
one of the modules. This is the ideal case: there are no dependencies
between the modules, so this will give us an idea of the maximum
available speedup. Figure 7 gives the results.

All our measurements are based on the average of three runs
of the compiler. The speedup is measured using the elapsed time
against the baseline ghc-6.5 (the first row of the table).

We obtained a speedup of 1.32 on this example, which is cer-
tainly worthwhile, but clearly there’s room for improvement.

In this example we increased the default heap size to 64Mb to
reduce the costs of garbage collection, nevertheless GC still takes
15% of elapsed time for the sequential compiler, and 27% in the
parallel case. Why does GC take more time when compiling in
parallel? There are two reasons:

• GHC is carrying more live data because it is compiling two
modules at a time rather than one, and

• The time spent compiling is shorter, so GC occupies a greater
percentage of the total elapsed time.

Looking at the “user time” figures in the table, we can see that
the parallel GHC required more execution time overall than the
sequential compiler. There are several reasons for this:

• Roughly half of the increase was due to the extra GC time.
This we know for sure, from our measurements; the following
reasons are rather more conjectural.

• There will be increased load on the shared memory system from
running two compilation threads in parallel. GHC is a fairly
heavy user of memory.

• Threads may migrate from one processor to another. Our
current scheduler implementation does not attempt to keep
any affinity between capabilities and OS threads, or between
Haskell threads and capabilities. So even if the OS implements
affinity between OS threads and CPUs, it is entirely possible for
a Haskell thread’s execution to move between CPUs, largely in-
validating the contents of both CPU’s caches.

Discounting GC from the figures, we obtain a more respectable
speedup of 1.54 for our parallel compiler versus the baseline. We
don’t expect to be able to achieve this figure in practice, because
the GC simply has more work to do when compiling in parallel,
but a multi-threaded GC would certainly help us get closer to this
result.

Another way to look at these figures is to say that, based on
the Linux user time figures, we are using about 1.5 CPUs over
the lifetime of the program to obtain a 1.3 speedup, so we aren’t
monopolising all the processing power on the system. Hence the
low speedup is due largely to a lack of parallelism rather than
overheads in the implementation.

The final row of the table lists the results obtained by using the
standard make tool to distribute multiple individual compilations
over multiple processors. We can think of this as another point on
the trade-off between sharing and copying: ghc --make shares a
lot of data between compilations, but incurs some dependencies
that reduce the parallelism. On the other hand, make -j2 can par-
allelise the 2 compilations perfectly, but the separate compilations
are duplicating some work; namely the reading of interface files for
libraries and other modules.

The unmodified GHC 6.5 baseline was used for this test, but we
set the heap size for each individual compilation to 32Mb, to give a
fairer comparison against the other tests which all use 64Mb in to-
tal. The figures show that for this simple 2-module test, make -j2
obtains a speedup of 1.52 versus the baseline ghc-6.5 --make,
so at least in this simple case, make -j2 beats our parallel com-
piler. However, as we increase the size of the programs in the tests
that follow, we will see that the overhead of completely separate
compilation will erode this advantage.

Next, we compiled Happy, a medium-sized program consisting
of 15 modules with 1700 lines of non-comment code. Figures 8
gives the results. We tried two sets of compilations, firstly with
optimisation turned off, and then with optimisation turned on (-O).
So compiling a realistic program, our speedup has dropped from
1.3 to 1.2. This is still relatively respectable, however.

The rationale for turning optimisation on is to test a hypothe-
sis: parts of the compiler that perform optimisation might involve
less contention for the shared state, because optimisation is largely
concerned with the code for the current module, compared to type-
checking which accesses the shared state frequently to find infor-
mation about imported modules. Nevertheless, our speedup in this
example seems unaffected by turning on optimisation.

The make -j2 test again comes out on top, but by a smaller
margin. Furthermore, we can see by the user time figures that
make -j2 is performing more total work than the parallel compiler,
although it is able to parallelise it more effectively.

Next, we compiled Anna from the nofib benchmark suite, a
larger program consisting of 31 modules and 3800 lines of non-
comment code. The results are shown in Figure 9.

In this example, the speedup without optimisation turned on is
rather more modest. That might indicate that contention for the
shared state in earlier phases of the compiler is in fact an issue,
perhaps more so for larger programs.

Now, however, we see that make -j2 is losing ground to
ghc-smp -j2. The overhead of restarting the compiler and re-
reading all the interface files for each compilation are too great to
be overcome by the available parallelism.

7.5 How many thunk entry conflicts are there?

Our current implementation does not implement the recovery
scheme described in Section 4, so we do not have accurate mea-
surements for the amount of duplicate evaluation detected and re-
covered from. However, we have reason to believe that the figure
will be small in the case of GHC: we measured the number of times
a GREYHOLE thunk was entered, in a version of ghc-smp compiled
with grey-holing support. With grey-holing turned on, the window
during which two threads can begin to evaluate the same thunk is
extremely small, so taking the average number of GREYHOLE entries
over a number of runs gives us a reasonable estimate of the number
of duplicate evaluations that would occur in a system performing

Test User time (s) Elapsed time (s) GC time (%) Speedup
ghc-6.5 -H64m -O 3.8 4.1 15% 1
ghc-smp -H64m -O 3.8 4.1 14% 1
ghc-smp -H64m -O -j2 4.6 3.1 27% 1.32
make -j2 4.8 2.7 ? 1.52

Figure 7. Compiling “ideal” 2-module library

Test User time (s) Elapsed time (s) GC time (%) Speedup
ghc-6.5 -H64m 8.5 9.8 21% 1
ghc-smp -H64m 8.9 9.9 22% 0.98
ghc-smp -H64m -j2 10.2 8.2 25% 1.20
make -j2 12.3 7.9 ? 1.24
ghc-6.5 -H64m -O 22.2 24.1 16% 1
ghc-smp -H64m -O 22.9 24.0 16% 1
ghc-smp -H64m -O -j2 25.9 20.1 21% 1.20
make -j2 28.0 18.4 ? 1.31

Figure 8. Compiling Happy with and without optimisation

Test User time (s) Elapsed time (s) GC time (%) Speedup
ghc-6.5 -H64m 9.9 10.4 13% 1
ghc-smp -H64m 10.4 10.8 13% 0.96
ghc-smp -H64m -j2 12.4 9.2 23% 1.13
make -j2 15.8 12.6 ? 0.82
ghc-6.5 -H64m -O 20.2 20.6 11% 1
ghc-smp -H64m -O 19.9 20.5 11% 1
ghc-smp -H64m -O -j2 23.3 16.9 21% 1.22
make -j2 27.4 20.7 ? 1

Figure 9. Compiling Anna with and without optimisation

blackholing at thread descheduling, as described in Section 4. In
such a system, some of these duplicate evaluations would be caught
by the system (we don’t know how many, though).

Over 10 runs of ghc-smp -H64m -j2, with grey-holing, com-
piling Happy, we saw an average of 11 grey-hole entries, with the
maximum being 26 and the minimum zero. With lazy black-holing
we saw rather fewer black-hole entries, but we did not observe any
speedup in the grey-holing version, so we conclude that there was
no significant duplicate work being performed.

7.6 Is GHC a realistic case study?

One might reasonably question whether GHC is a “typical” par-
allel application, and whether we can conclude anything based on
the measurements above. Indeed, much of this paper has concen-
trated on how to efficiently deal with the issue of multithreaded
contention for thunks, and yet apparently there is very little con-
tention for thunks in parallel GHC.

It is not true to say there are no thunks in the data shared by par-
allel threads in GHC. The shared ExternalPackageState is full
of unevaluated data: in fact, it is only the top-level mapping from
Module to ModDetails that is mutated in the IO monad, much of
the contents of the ModDetails itself is lazilly constructed. For
example, the type of each identifier in a ModDetails will initially
be represented by a thunk, that when evaluated will extract the type
from the interface and convert it into GHC’s internal representation.

We believe that minimising the contention for unevaluated data
in parallel Haskell programs will generally be good advice. How-
ever, we do not believe that simplifying the system by requiring the
programmer to be explicit about access to shared data is a viable

alternative: the aim is to impose as little burden on the programmer
as possible in order to make parallel execution highly accessible.

8. Related work
There is an enormous literature on parallel functional program-
ming, to which we cannot hope to do justice here; for example,
the recent book by Hammond and Michaelson has a bibliography
of over 600 entries [7]. Other good surveys are available in [25, 13].

Driven by the desire for scalability and portability, almost all
this research has focused on distributed-memory implementations,
which have a separate address space, heap, and runtime system
for each processor (e.g. GUM [24], Clean [7, chapter 15]). As
Hammond & Michaelson put it “Over the last few years, it has
become generally accepted that a message-passing interface (or,
less generally accepted, a virtual shared-memory interface) can
provide efficient access to a wide class of parallel architectures
while enhancing the portability of parallel programs” [7].

These systems are mostly research prototypes. They require
careful tuning to ameliorate the overheads of copying between
heaps, and they lack the language features to support full-scale
applications. The notable exception is Erlang, an explicitly-parallel
functional language that uses message-passing to communicate
between threads. Erlang is a mature full-scale language used in real
applications in telecommunications [2].

We instead focus on the more limited goal of exploiting the
shared-memory architecture of existing multi-processors and up-
coming multi-core processors. In that sense, our work is closer to
much older work, such as the 〈ν, G〉 machine of Augustsson and
Johnsson [3]. This implementation did locking on every thunk, but

back in the days when locking was less expensive relative to normal
execution.

9. Further Work
This paper has shown how to support lightweight parallel thunk
evaluation in which it is unnecessary to have “strong” synchronisa-
tion operations such as locks or compare-and-swap instructions on
the fast-path code when allocating, evaluating and updating thunks.
The result is that providing the ability to safely evaluate Haskell
code in parallel has a cost, on average, of only 6%, almost ten times
less than that of a lock-based design.

There are several interesting directions for future work based
on this platform. As we move to working on larger multiprocessor
machines, we will need to update the garbage collector so that
collection work can be parallelised. This should be straightforward:
there are numerous existing designs for parallel garbage collection
on shared memory machines.

Of course, we also need to investigate more thoroughly where
the remaining costs are being incurred, and to confirm our intuition
that our lock-free design coupled with black-holing prevents almost
all duplicate evaluation work; can we reduce the overhead still
further?

More interestingly, we wish to return to the question of how par-
allel code is best expressed in a language like Haskell – for instance,
combinators such as par and seq and ideas such as Strategies
for orchestrating their use [23]. Another direction is to investigate
feedback-directed schemes to attempt to identify thunks that may
usefully be evaluated in parallel – for instance ones that are likely
to be needed in the future, which represent a reasonable amount of
work and where speculative parallel evaluation is unlikely to intro-
duce contention with ‘mainline’ threads.

There are also interesting problems to investigate within the run-
time system: our current design is simplistic with a single shared
work queue without any notions of affinity. Furthermore, in sys-
tems comprising multiple cores spread across multiple CPUs and
multiple points on an interconnect network, it may even be worth
leaving processing resources idle if performance is being limited by
contention in the caches or between the processors. These scenarios
both suggest some kind of adaptive feedback-based scheme.

The implementation described here is publicly available from
the Glasgow Haskell Compiler CVS repository.

Acknowledgments
Many thanks to Galen Menzel for his helpful feedback on earlier
drafts of the paper.

References
[1] Alpha Architecture Handbook. Compaq Computer Corporation, 4th

edition, Oct. 1998.
[2] J. Armstrong. The development of Erlang. In ACM SIGPLAN

International Conference on Functional Programming (ICFP’97),
pages 196–203, Amsterdam, Aug. 1997. ACM.

[3] L. Augustsson and T. Johnsson. Parallel graph reduction with the
〈ν, g〉-machine. In ACM Conference on Functional Programming
and Computer Architecture (FPCA’89), pages 202–213, London,
Sept. 1989. ACM.

[4] R. Ennals. Adaptive Evaluation of Non-String Programs. PhD thesis,
Cambridge University Computer Laboratory, 2004.

[5] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel garbage
collection for shared memory multiprocessors. In USENIX Java
Virtual Machine Research and Technology Symposium, Monterey,
CA, Apr. 2001.

[6] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University
Computer Laboratory, 2003.

[7] K. Hammond and G. Michaelson, editors. Research Directions in
Parallel Functional Programming. Springer-Verlag, 1999.

[8] T. Harris and K. Fraser. Language support for lightweight trans-
actions. In Object-Oriented Programming, Systems, Langauges &
Applications (OOPSLA ’03), pages 388–402, Oct. 2003.

[9] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. In ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP’05), June 2005.

[10] R. Jones. Tail recursion without space leaks. Journal of Functional
Programming, 2(1):73–80, Jan 1992.

[11] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley and Sons, July 1996.

[12] K. Kawachiya, A. Koseki, and T. Onodera. Lock reservation: Java
locks can mostly do without atomic operations. In OOPSLA, pages
130–141, 2002.

[13] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi,
U. Klusik, R. Loogen, G. J. Michaelson, R. Pena, A. J. R. Portillo,
S. Priebe, and P. W. Trinder. Comparing parallel functional
languages: Programming and performance. Higher-order and
Symbolic Computation, 16(3):203–251, September 2003.

[14] V. J. Marathe, W. N. S. III, and M. L. Scott. Design tradeoffs in
modern software transactional memory systems. In Proceedings of
the 7th Workshop on Languages, Compilers, and Run-time Support
for Scalable Systems, Oct. 2004.

[15] S. Marlow, S. P. Jones, and W. Thaller. Extending the haskell foreign
function interface with concurrency. In Proceedings of the ACM
SIGPLAN workshop on Haskell, pages 57–68, Snowbird, Utah, USA,
September 2004.

[16] S. Marlow, S. Peyton Jones, A. Moran, and J. Reppy. Asynchronous
exceptions in Haskell. In ACM Conference on Programming
Languages Design and Implementation (PLDI’01), pages 274–285,
Snowbird, Utah, June 2001. ACM.

[17] W. Partain. The nofib benchmark suite of Haskell programs.
In Proceedings of the 1992 Glasgow Workshop on Functional
Programming, pages 195–202, London, UK, 1993. Springer-Verlag.

[18] S. Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. In
C. Hoare, M. Broy, and R. Steinbrueggen, editors, Engineering
theories of software construction, Marktoberdorf Summer School
2000, NATO ASI Series, pages 47–96. IOS Press, 2001.

[19] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In
23rd ACM Symposium on Principles of Programming Languages
(POPL’96), pages 295–308, St Petersburg Beach, Florida, Jan. 1996.
ACM.

[20] A. Reid. Putting the spine back in the Spineless Tagless G-Machine:
An implementation of resumable black-holes. In Proc. IFL’98
(selected papers), volume 1595 of LNCS, pages 186–199. Springer-
Verlag, 1999.

[21] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed Computing, pages 204–213. ACM Press, Aug. 1995.

[22] H. Sutter. A fundamental turn toward concurrency in software. Dr.
Dobb’s Journal, March 2005.

[23] P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Algo-
rithm + strategy = parallelism. Journal of Functional Programming,
8:23–60, Jan. 1998.

[24] P. Trinder, K. Hammond, J. Mattson, A. Partridge, and S. Pey-
ton Jones. GUM: a portable parallel implementation of haskell.
In ACM Conference on Programming Languages Design and Imple-
mentation (PLDI’96). ACM, Philadelphia, May 1996.

[25] P. Trinder, H. Loidl, and R. Pointon. Parallel and distributed Haskells.
Journal of Functional Programming, 12:469–510, July 2002.

[26] D. L. Weaver and T. Germond, editors. The SPARC architecture
manual. Prentice Hall, 1994. Version 9.

