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Abstract
Purely functional programs should run well on parallel hardware
because of the absence of side effects, but it has proved hard to
realise this potential in practice. Plenty of papers describe promis-
ing ideas, but vastly fewer describe real implementations with good
wall-clock performance. We describe just such an implementation,
and quantitatively explore some of the complex design tradeoffs
that make such implementations hard to build. Our measurements
are necessarily detailed and specific, but they are reproducible, and
we believe that they offer some general insights.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.2 [Programming Languages]: Language Classific-
ations—Concurrent, distributed and parallel languages; D.3.3
[Programming Languages]: Language Constructs and Features—
Concurrent programming structures; D.3.4 [Programming Lan-
guages]: Processors—Runtime-environments

General Terms Languages, Performance

1. Introduction
At least in theory, Haskell has a head start in the race to find
an effective way to program parallel hardware. Purity-by-default
means that there should be a wealth of inherent parallelism in
Haskell code, and the ubiquitous lazy evaluation model means that,
in a sense, futures are built-in.

How can we turn these benefits into real speedups on commod-
ity hardware? This paper documents our experiences with building
and optimising a parallel runtime for Haskell. Our runtime sup-
ports three models of parallelism: explicit thread-based concur-
rency (Peyton Jones et al. 1996), semi-explicit deterministic par-
allelism (Trinder et al. 1998), and data-parallelism (Peyton Jones
et al. 2009). In this paper, however, we focus entirely on semi-
explicit parallelism.

Completely implicit parallelism is still a distant goal; one re-
cent attempt at this in the context of Haskell can be found in Harris
and Singh (2007). The semi-explicit GpH programming model, in
contrast, has been shown to be remarkably effective (Loidl et al.
1999, 2003). The semantics of the program remains completely de-
terministic, and the programmer is not required to identify threads,
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communication, or synchronisation. They merely annotate sub-
computations that might be evaluated in parallel, leaving the choice
of whether to actually do so to the runtime system. These so-called
sparks are created and scheduled dynamically, and their grain size
varies widely.

Our goal is that programmers should be able to take exist-
ing Haskell programs, and with a little high-level knowledge of
how the program should parallelise, make some small modifica-
tions to the program using existing well-known techniques, and
thereby achieve decent speedup on today’s parallel hardware. How-
ever, when we started benchmarking some existing Parallel Haskell
programs, we found that many programs which at first glance ap-
peared to be completely reasonable-looking parallel programs, in
fact failed to achieve significant speedup when run with our imple-
mentation on parallel hardware.

This led us to a critical study of our (reasonably mature) base-
line implementation of semi-explicit parallelism in GHC 6.10. In
this paper we report the results of that study, with the following
contributions:

• We give a complete description of GHC’s parallel runtime,
starting with an overview in Section 4, and amplified in the rest
of the paper. A major constraint is that we do barely compro-
mise the (excellent) execution speed of sequential code.

• We discuss several major sets of design choices, relating to
spark distribution, scheduling, and memory management (Sec-
tions 5 and 7); parallel garbage collection (Section 6); the im-
plementation of mutual exclusion on thunks (Section 8); and
load balancing and thread migration (Section 9). In each case
we give quantitative measurements for a number of optimisa-
tions that we made over our baseline GHC 6.10 implementa-
tion.

• While we focus mainly on the implementation, our work has
had some impact on the programming model: we identify the
need for pseq as well as seq (Section 2.1), and we isolated
a signficant difficulty in the “strategies” approach to writing
parallel programs (Section 7).

• On the way we developed a useful new profiling and tracing
tool (Section 10.1).

Overall, our results are encouraging (Figure 1). The optimisations
we describe improve the absolute runtime and scalability of all
benchmarks, sometimes dramatically so. Before our work, some
programs would speed up on a parallel machine, but others slowed
down. Afterwards, using 7 cores of an 8-core machine yielded
speedups in the range 3x to 6.6x, which is not bad for a modest
investment of programmer effort.

Some of the improvements were described in earlier work
(Berthold et al. 2008), along with preliminary measurements, as
part of a comparison between shared-heap and distributed-heap
parallel execution models. In this paper we extend both the range
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of measurements and the range of improvements, while focussing
exclusively on shared-heap execution.

All our results are, or will be, repeatable using a released ver-
sion of the widely-used GHC compiler. Our results do not require
special builds of the compiler or libraries: identical results will be
obtainable using a standard binary distribution of GHC. At the time
of writing, most of our developments have been made public in the
GHC source code repository, and we expect to include the remain-
ing changes in the forthcoming 6.12.1 release of GHC, scheduled
for the autumn of 2009. The sources to our benchmark programs
are available in the public nofib source repository.

2. Background: programming model
The basic programming model is known as Glasgow Parallel
Haskell, or GpH (Trinder et al. 1998), and consists of two com-
binators:

par :: a -> b -> b
pseq :: a -> b -> b

The semantics of par a b is simply the value of b, whereas the
semantics of pseq is given by

pseq a b = ⊥, if a = ⊥
= b, otherwise

Informally, par stores its first argument as a spark in the spark
pool, and then continues by evaluating its second argument. The
intention is that idle processors can find (probably) useful work
in the spark pool. Typically the first argument to par will be an
expression that is shared by another part of the program, or will be
an expression that refers to other such shared expressions.

2.1 The need for pseq
The pseq combinator is used for sequencing; informally, it eval-
uates its first argument to weak-head normal form, and then eval-
uates its second argument, returning the value of its second argu-
ment. Consider this definition of parMap:

parMap f [] = []
parMap f (x:xs) = y ‘par‘ (ys ‘pseq‘ y:ys)

where y = f x
ys = parMap f xs

The intention here is to spark the evaluation of f x, and then
evaluate parMap f xs, before returning the new list y:ys. The
programmer is hoping to express an ordering of the evaluation: first
spark y, then evaluate ys.

The obvious question is this: why not use Haskell’s built-in seq
operator instead of pseq? The only guarantee made by seq is that
it is strict in both arguments; that is, seq a ⊥ = ⊥ and seq ⊥
a = ⊥. But this semantic property makes no operational guaran-
tee about order of evaluation. An implementation could impose this
operational guarantee on seq, but that turns out to limit the optimi-
sations that can be applied when the programmer only cares about
the semantic behaviour. Instead, we provide both pseq and seq
(with and without an order-of-evaluation guarantee), to allow the
programmer to say what she wants while leaving the compiler with
as much scope for optimisation as possible.

To our knowledge this is the first time that this small but im-
portant point has been mentioned in print. The pseq operator first
appeared in GHC 6.8.1.

2.2 Strategies
In Algorithms + Strategies = Parallelism (Trinder et al. 1998),
Trinder et al explain how to use strategies to modularise the con-
struction of parallel programs. In brief, the idea is as follows. A

Speedup on 4 cores
Program Before After
gray 2.19 2.50
mandel 2.94 3.51
matmult 2.56 3.37
parfib 3.73 3.89
partree 0.74 1.99
prsa 3.28 3.56
ray 0.81 2.11
sumeuler 3.74 3.85

Speedup on 7 cores
Program Before After
gray 2.61 2.77
mandel 4.50 4.96
matmult 4.07 5.04
parfib 5.94 6.67
partree 0.68 3.18
prsa 5.22 5.23
ray 0.82 3.48
sumeuler 6.32 6.42

Figure 1. Speedup results

strategy is a function that may evaluate (parts of) its argument and
create sparks, but has no interesting results:

type Done = ()
done = ()
type Strategy a = a -> Done

Strategies compose nicely; that is, we can build complex strate-
gies out of simpler ones:

rwhnf :: Strategy a
rwhnf x = x ‘pseq‘ done

parList :: Strategy a -> Strategy [a]
parList strat [] = done
parList strat (x:xs) = strat x ‘par‘ parList strat xs

Finally, we can combine a data structure with a strategy for
evaluating it in parallel:

using :: a -> Strategy a -> a
using x s = s x ‘pseq‘ x

Here is how we might use the combinators to evaluate all the
element of a (lazy) input list in parallel, and then add them up:

psum :: [Int] -> Int
psum xs = sum (xs ‘using‘ parList rwhnf)

3. Making parallel programs run faster
We now turn our attention from the programming model to the
implementation. Our baseline is GHC 6.10.1, a mature Haskell
compiler. Its performance on sequential code is very good, so the
overheads of parallelism are not concealed by sloppy sequential
execution. It has supported parallel execution for several years,
but while parallel performance is sometimes good, it is sometimes
surprisingly bad. The trouble is that it is hard to know why it
is bad, because performance is determined by the interaction of
four systems — the compiler itself, the GHC runtime system, the
operating system, and the physical hardware — each of which is
individually extremely complex. The rest of this paper reports on
our experience of improving both the absolute performance and its
consistency.

To whet your appetite, Figure 1 summarises the cumulative
improvement of the work we present, for 4 and 7 cores1. Each table
has 2 columns:

1 Why did we use only 7 of the 8 cores on our test system? In fact we
did perform the measurements for all 8 cores, but found that the results
were far less consistent than the 7 core results, and in some cases perfor-
mance degraded significantly. On closer inspection the OS appeared to be
descheduling one or more of our threads, leading to long pauses when the
threads needed to synchronise. This effect is discussed in more detail in
Section 10.1.
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Figure 2. Speedup results

• Before: speedup achieved by parallel execution using GHC
6.10.1, compared to the same program compiled sequentially
with 6.10.1, with the parallel GC turned off. In GHC 6.10.1 the
parallel GC tended to make things worse rather than better, so
this column reflects the best settings for GHC 6.10.1.

• After: our best speedup results, using the PARGC3 configura-
tion (Section 6).

The improvements are substantial, especially for the most disap-
pointing programs which actually ran slower when parallelism was
enabled in 6.10.1. Section 10 gives more details about the experi-
mental setup and the benchmark programs.

Figure 2 shows the scaling results for each benchmark program
after our cumulative improvements, relative to the performance of
the sequential version. By “sequential” we mean that the single-
threaded version of the runtime system was used, in which par is a
no-op, and there are no synchronisation overheads.

4. Background: the GHC runtime
By way of background, we describe in this section how GHC
runs Haskell programs in parallel. In the sections that follow we
present various measurements to show the effectiveness of certain
aspects of our implementation design. Each of our measurements
compare two configurations of GHC. Many of our improvements
are cumulative and it proved difficult to untangle the source-code
dependencies from each other in order to be able to make each
measurement against a fixed baseline, so in each case we will
clearly state what the baseline is.

4.1 The basic setup
The GHC runtime system supports millions of lightweight threads
by multiplexing them onto a handful of operating system threads,

roughly one for each physical CPU. This overall scheme is well-
established, but it is easier to sketch than to implement!

Each Haskell thread runs on a finite-sized stack, which is allo-
cated in the heap. The state of a thread, together with its stack, is
kept in a heap-allocated thread state object (TSO). The size of a
TSO is around 15 words plus the stack, and constitutes the whole
state of a Haskell thread. A stack may grow by copying the TSO
into a larger area, and may subsequently shrink again.

Haskell threads are executed by a set of operating system
threads, which we call worker threads. We maintain roughly one
worker thread per physical CPU, but exactly which worker thread
may vary from moment to moment, as we explain in Section 4.2.
Since the worker thread may change, we maintain exactly one
Haskell Execution Context (HEC) for each CPU2. The HEC is a
data structure that contains all the data that an OS worker thread
requires in order to execute Haskell threads. In particular, a HEC
contains

• An Ownership Field, protected by a lock, that records which
worker thread is currently animating the capability (zero if none
is). We explain in Section 4.2 why we do not use the simpler
device of a lock to protect the entire HEC data structure.

• A Message Queue, containing requests from other HECs. For
example, messages saying “Please wake up thread T” arrive
here.

• A Run Queue of threads ready to run.

2 In the source code of the runtime system, a HEC is called a “Capability”.
The HEC terminology comes from the lightweight concurrency primitives
work (Li et al. 2007b). Others call the same abstraction a “virtual processor”
(Fluet et al. 2008a).
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• An Allocation Area (Section 6). There is a single heap, shared
among all the HECs, but each HEC allocates into its own local
allocation area.

• GC Remembered Sets (Section 6.2).
• A Spark Pool. Each invocation of par a b adds the thunk a to

the (current HEC’s) Spark Pool; this thunk is called a “spark”.
• A Worker Pool of spare worker threads, and a Foreign Outcall

Pool of TSOs that are engaged in foreign calls (see Section 4.2).

In addition there is a global Black Hole Pool, a set of threads that
are blocked on black holes (see Section 8).

An active HEC services work using the following priority
scheme. Items lower down the list are only performed if there are
no higher-priority items available.

1. Service a message on the Message Queue.

2. Run a thread on the Run Queue; we use a simple round-robin
scheduling order.

3. If any spark pool is non-empty, create a spark thread and start
running it (see Section 5.3).

4. Poll the Black Hole Pool to see if any thread has become
runnable; if so, run it.

All the state that a HEC needs for ordinary execution of Haskell
threads is local to the HEC, so under normal execution a HEC
proceeds without requiring any synchronisation, locks, or atomic
instructions. Synchronisation is only needed when:

• Load balancing is needed (Section 9).
• Garbage collection is required (Section 6).
• Blocking on black holes (Section 8.1).
• Performing an operation on an MVar, or an STM transaction.
• Unblocking a thread on another HEC.
• Throwing an exception to a thread on another HEC, or a

blocked thread.
• Allocating large or immovable memory objects; since these

operations are relatively rare, we allocate such objects from
single global pool.

• Making a (safe) foreign call (Section 4.2).

4.2 Foreign calls
Suppose that a Haskell thread makes a foreign call to a C procedure
that blocks, such as getChar. We do not want the entire HEC to
seize up so, before making the call, the worker thread relinquishes
ownership of the HEC, leaving the Haskell thread in a tidy state.
The thread is then placed in the Foreign Outcall Pool so that
the garbage collector can find it. We maintain a Worker Pool of
worker threads for each HEC, each eager to become the worker
that animates the HEC. When one worker relinquishes ownership,
it triggers a condition variable that wakes up another worker from
the Worker Pool. If the latter is empty, a new worker is spawned.

What happens when the original worker thread W completes its
call to getChar and wants to return? To return, it must re-acquire
ownership of the HEC, so it must somehow displace any worker
thread X that currently owns the HEC. To do so, it adds a message
to the HEC’s Message Queue. When X sees this message, it signals
W, and returns itself to the worker pool. Worker thread W wakes up,
and takes ownership of the HEC. This approach is slightly better
than directly giving W ownership of the HEC, because W might
be slow to respond, and the HEC does not remain locked for the
duration of the handover.

4 cores
Program ∆ Time (%)
gray +6.5
mandel -3.4
matmult -2.1
parfib +3.5
partree -1.2
prsa -4.7
ray -35.4
sumeuler +0.0
Geom. Mean -5.5

7 cores
Program ∆ Time (%)
gray -2.1
mandel -4.9
matmult +1.6
parfib -1.2
partree -3.7
prsa -6.7
ray -66.1
sumeuler +1.4
Geom. Mean -14.4

Figure 3. The effect of adding work-stealing queues vs. GHC
6.10.1

This also explains why we don’t simply have a mutex protecting
the HEC, which all the spare worker threads are blocked on. That
approach would afford us less control in the sense that we often
want to hand the HEC to a particular worker thread, and a simple
mutex would not allow us to do that.

Foreign calls are not the focus of this paper, but more details
can be found in Marlow et al. (2004).

5. Faster sparks
We now discuss the first set of improvements, which relate to the
handling of sparks.

5.1 Sharing sparks
GHC 6.10.1 has a private Spark Pool for each HEC, but it uses a
“push” model for sharing sparks, as follows. In between running
Haskell threads, each HEC checks whether its spark pool has more
than one spark. If so, it checks whether any other HECs are idle (a
cheap operation that requires no atomic instructions); if it finds an
idle HEC it gives one or more sparks to it, by temporarily acquiring
ownership of the remote HEC and inserting the sparks in its pool.

To make spark distribution cheaper and more asynchronous
we re-implemented each HEC’s Spark Pool as a bounded work-
stealing queue (Arora et al. 1998; Chase and Lev 2005). A work-
stealing queue is a lock-free data structure with some attractive
properties: the owner of the queue can push and pop from one
end without synchronisation, meanwhile other threads can “steal”
from the other end of the queue incurring only a single atomic
instruction. When the queue is almost empty, popping also incurs
an atomic instruction to avoid a race between the popping thread
and a stealing thread.

When a spark is pushed onto an already full queue, we have a
choice between discarding the new spark or discarding one of the
older sparks. Our current implementation discards the newer spark;
we do not investigate this choice further in this paper.

Figure 3 shows the effect of adding work-stealing queues to our
baseline GHC 6.10.1. As we can see from the results, work-stealing
for sparks is almost always beneficial, and increasingly so as we
add more cores. It is of particular benefit to ray, where the task
granularity is very small.

5.2 Choosing a spark to run
Because we use a work-stealing queue for our spark pools, stealing
threads must always take the oldest spark in the pool. However, the
HEC owning the spark pool has a choice between two policies: it
can take the youngest spark from the pool (LIFO), or it can take
the oldest spark (FIFO). Taking the oldest spark requires an atomic
instruction, but taking the youngest spark does not.

Figure 4 shows the effect of changing the default (FIFO) to
LIFO. In most of our benchmarks this results in worse performance,
because the older sparks tend to be “larger”.
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4 cores
Program ∆ Time (%)
gray +10.1
mandel +4.5
matmult -0.4
parfib +0.2
partree -7.3
prsa -0.3
ray +10.0
sumeuler +0.3
Geom. Mean +2.0

7 cores
Program ∆ Time (%)
gray +5.3
mandel +6.2
matmult -1.2
parfib +1.0
partree -1.6
prsa -2.3
ray +18.7
sumeuler +17.9
Geom. Mean +5.2

Figure 4. Using LIFO rather than FIFO for local sparks

4 cores
Program ∆ Time (%)
gray -0.7
mandel -1.5
matmult -8.2
parfib +0.6
partree -0.6
prsa -1.0
ray -31.2
sumeuler +0.2
Geom. Mean -5.9

7 cores
Program ∆ Time (%)
gray +2.3
mandel +1.3
matmult -11.3
parfib +6.4
partree +0.3
prsa -1.0
ray -24.3
sumeuler -0.3
Geom. Mean -3.8

Figure 5. The effect of batching sparks

5.3 Batching sparks
To run a spark a, a HEC simply evaluates the thunk a to head
normal form. To do so, it needs a Thread State Object. It makes
no sense to create a fresh TSO for every spark, and discard it when
the evaluation is complete for the garbage collector to recover.

Instead, when a HEC has no work to do, it checks whether there
are any sparks, either in the HEC’s local spark pool or in any other
HEC’s spark pool (check the non-empty status of a spark pool does
not require a lock). If there are sparks available, then the HEC
creates a spark thread, which is a perfectly ordinary thread except
that it runs the following steps in a loop:

1. If the local Run Queue or Message Queue is non-empty, exit.

2. Remove a spark from the local spark pool, or if that is empty,
steal a spark from another HEC’s pool.

3. If there were no sparks to steal, exit.

4. Evaluate the spark to weak-head-normal form.

where “exit” means that the spark thread exits and performs no
further work; its TSO will be recovered by a subsequent GC.

A spark thread will therefore evaluate sparks to WHNF one
after another until it can find no more sparks, or until there is other
work to do, at which point it exits. This is a particularly simple
strategy and works well: the cost of creating the spark thread is
amortized over multiple sparks, and the spark thread gets out of
the way quickly if any other work arrives. If a spark blocks on a
black hole, since the spark thread is just an ordinary thread it will
block in the usual way, and the scheduler will create another spark
thread to continue running the available sparks. We don’t have to
worry unduly about having too many spark threads, because a spark
thread will always exit when there are other threads around. This
reasoning does rely on sparks not being too large, however: many
large sparks becoming blocked could lead to a large number of
running spark threads.

Figure 5 compares the effect of using the spark-batching ap-
proach described above to the approach taken in GHC 6.10.1,

which was to create a new thread for each activated spark. Our
baseline for these measurements is GHC 6.10.1 plus work-stealing-
queues (Section 5.1). Batching sparks is particularly beneficial to
two of our benchmarks, matmult and ray, while it is a slight pes-
simisation for parfib on 7 cores. For ray the rationale is clear: there
are lots of tiny sparks, so reducing the overhead for spark execution
has a significant effect. For parfib we believe that the reduction
in performance shown here is because the program is actually be-
ing more effective at exploiting parallelism, which leads to reduced
performance due to lack of locality (Section 6); as we shall see
later, this performance loss is recovered by proper use of parallel
GC.

6. Garbage collection
The shared heap is divided into fixed-size (4kbyte) blocks, each
with a block descriptor that specifies which generation it belongs
to, along with other per-block information. A HEC’s Allocation
Area simply consists of a list of such blocks.

When any HEC’s allocation area is exhausted, a garbage col-
lection must be performed. GHC 6.10.1 offers a parallel garbage
collector (see Marlow et al. (2008)), but GC only takes place when
all HECs stop together, and agree to garbage collect. We aim to
keep this synchronisation overhead to a minimum by ensuring that
we can stop a HEC quickly (Section 6.3). In future work we plan
to relax the stop-the-world requirement and adopt some form of
CPU-independent GC (Section 12.1).

When a GC is required, we have the option of either

• Performing a single-threaded GC. In this case, the HEC that
initiated the GC waits for all the other HECs to cease execution,
performs the GC, and then releases the other HECs.

• Performing a parallel GC. In this case, the initiating HEC sends
a signal to the other HECs, which causes them to become
GC threads and await the start of the GC. Once they have all
responded, the initiating HEC performs the GC initialisation
and releases the other GC threads to perform GC. When the GC
termination condition is reached, each GC thread waits at the
GC exit barrier. The initiating HEC performs any post-GC tasks
(such as starting finalizers), and then releases the GC threads
from the barrier to continue running Haskell code.

In a single-threaded program, it is often better to use single-
threaded GC for the quick young-generation collections, because
the cost of starting up and shutting down the GC threads can
outweigh the benefits of doing GC in parallel.

6.1 Avoiding synchronisation in parallel copying GC
Parallel copying GC normally requires each GC thread to use an
atomic instruction to synchronise when copying an object, so that
objects are not accidentally duplicated. The cost of these atomic in-
structions is high: roughly 30% of GC time (Marlow et al. 2008).
However, as we suggested in that paper, it is possible to relax
the synchronisation requirement where immutable objects are con-
cerned. The only adverse effect from making multiple copies of an
immutable object is a little wasted space, and we know from mea-
surements that the rate of actual collisions is very low–typically
less than 100 collisions per second of GC time–so the amount of
wasted space is likely to be minuscule.

Our parallel GC therefore adopts this policy, and avoids syn-
chronising access to immutable objects. Figure 6 compares the two
policies: the baseline is our current system in which we only lock
mutable objects, compared to a modified version in which we lock
every object during GC. As the results show, our optimisation of
only locking mutable objects has a significant benefit on overall
performance: without it, performance drops by over 7%. The effect
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7 cores
Program ∆ Time (%)
gray +18.7
mandel +9.4
matmult +4.5
parfib -0.5
partree +17.3
prsa +2.5
ray +4.8
sumeuler +5.8
Geom. Mean +7.6

Figure 6. Effect of locking all closures in the parallel GC

is the most marked in benchmarks that do the most GC: gray, but
is negligible in those that do very little GC: parfib.

6.2 Remembered Sets
Remembered sets are used in generational GC to track pointers
from older generations into younger ones, so that when collecting
the younger generation we can quickly find all the pointers into
that generation. Whenever a pointer into a younger generation is
created, an entry must be added to the remembered set.

There are many choices for the representation of the remem-
bered set and the form of its associated write barrier (Blackburn
and Hosking 2004). In GHC, because mutation is rare, we opted
for a relatively expensive write barrier in exchange for an accurate
remembered set. Our remembered set representation is a sequential
store buffer, which contains the addresses of objects in the old gen-
eration that contain pointers into the new generation. Each mutable
object is marked to indicate whether it is dirty or not; dirty objects
are in the remembered set. The write barrier adds a new entry to the
remembered set if and only if the object being mutated is in the old
generation and is not already marked dirty.

In our parallel runtime, each HEC has its own remembered set.
The reasons for this are twofold:

• Even though appending to the remembered set is not a common
operation, it is common enough that the effect of including
any synchronisation would be noticeable. Hence, we must be
able to add new entries to the remembered set without atomic
instructions.

• Objects that have been mutated by the current CPU are likely
to be in its cache, so it is desirable to visit these objects by
the garbage collector on the same CPU. This is particularly
important in the case of threads: the stack of a thread, and hence
its TSO, is itself a mutable object. When a thread executes, the
stack will accumulate pointers to new objects, and so if the TSO
resides in an old generation it must be added to the remembered
set. Having HEC-local remembered sets helps to ensure that the
garbage collector traverses a thread on the same CPU that was
running the thread.

One alternative choice for the remembered set is the card table.
Card tables have the advantage that they can be updated by multiple
threads without synchronisation, but they compromise on accuracy.
More importantly for us, however, would be the loss of locality
from using a single card table instead of per-HEC sequential store
buffers.

We do not have individual measurements for the benefit of using
HEC-local remembered sets, but believe that it is essential for good
performance of parallel programs. In GHC 6.10.1 remembered
sets were partially localised: they were local during execution,
but shared during GC. We subsequentially modified these partially
HEC-local remembered sets to be fully localised.

4 cores
Program ∆ Time (%)
gray -3.9
mandel -1.4
matmult -0.5
parfib -0.5
partree +5.0
prsa +2.3
ray +3.4
sumeuler -0.3
Geom. Mean +0.5

7 cores
Program ∆ Time (%)
gray -9.7
mandel -2.1
matmult +0.0
parfib +0.4
partree +0.3
prsa -0.1
ray -2.8
sumeuler -1.7
Geom. Mean -2.0

Figure 7. Using the heap-limit for context switching

6.3 Pre-emption and garbage collection
Since garbage collection is relatively frequent, and requires all
HECs to halt, it is important that they all do so promptly. One way
to do this would be to use time-based pre-emption; however that
would essentially mandate the use of conservative GC, which we
consider an unacceptable compromise. Hence in order to GC, we
require that all HECs voluntarily yield at a safe point, leaving the
system in a state where all the heap roots can be identified.

The standard way to indicate to a running thread that it should
yield immediately is to set its heap-limit register to zero, thus
causing the thread to return to the HEC scheduler when it next tries
to allocate.

On a register-poor machine, we keep the heap-limit “register”
in memory, in a block of “registers” pointed to by a single real
machine register. In this case, it is easy for one HEC to set another
HEC’s heap limit to zero, simply by overwriting the appropriate
memory location. On a register-rich machine we can keep the heap
limit in a real machine register, but it is then a good deal more
difficult for one HEC to zap another HEC’s heap limit, since it is
part of the register set of a running operating-system thread. We
therefore explored two alternatives for register-rich architectures:

• Keep the heap limit in memory. This slows the heap-exhaustion
check, but releases an extra register for argument passing.

• Keep the heap limit in a register, and implement pre-emption
by setting a separate memory-resident flag. The flag is checked
whenever the thread’s current allocation block runs out, since it
would be too expensive to insert another check at every heap-
check point. This approach is cheap and easy, but pre-emption is
much less prompt: a thread can allocate up to 4k of data before
noticing that a context-switch is required.

Figure 7 measures the benefit of using the heap-limit register
to signal a context-switch, versus checking a flag after each 4k of
allocation. We see a slight drop in performance at 4 cores, changing
to an increase in performance at 7 cores. This technique clearly
becomes more important as the number of cores and the amount of
garbage collection increases: benchmarks like gray that do a lot of
GC benefit the most.

6.4 Parallel GC and locality
When we initially developed the parallel GC, our goal was to im-
prove GC performance, so we focused most of our effort on us-
ing parallelism to accelerate garbage collection for single-threaded
programs (Marlow et al. 2008). In this case the key goal is achiev-
ing good load-balancing, that is, making sure that all of the GC
threads have work to do.

However, there is another factor working in the opposite direc-
tion: locality. For parallel programs, when GC begins each CPU
already has a lot of data in its cache; in a sequential program only
one CPU does. It would obviously make sense for each CPU to
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∆ Time (%)
Program PARGC1 PARGC2 PARGC3
gray -3.9 +52.5 -11.9
mandel +3.6 +19.0 -9.9
matmult -14.6 -3.9 -8.1
parfib -0.5 -1.9 -6.4
partree +5.0 -60.7 -65.8
prsa -0.4 +1.2 -4.4
ray +2.0 -2.6 -18.0
sumeuler +0.3 -0.5 -1.4
Min -14.6 -60.7 -65.8
Max +5.0 +52.5 -1.4
Geometric Mean -1.2 -5.1 -19.3

Figure 8. The effectiveness of parallel GC (4 cores)

∆ Time (%)
Program PARGC1 PARGC2 PARGC3
gray +2.8 +106.2 -3.0
mandel +8.9 +57.5 -5.2
matmult -19.2 +14.1 -14.1
parfib +0.9 -1.5 -7.6
partree -2.1 -70.3 -79.8
prsa +3.2 +16.7 +8.2
ray -0.8 +6.2 -5.2
sumeuler +5.1 +0.0 -2.8
Min -19.2 -70.3 -79.8
Max +8.9 +106.2 +8.2
Geometric Mean -0.5 +3.7 -21.3

Figure 9. The effectiveness of parallel GC (7 cores)

garbage-collect its own data, so far as possible, rather than to allow
GC to redistribute it.

Each HEC starts by tracing its own root set, starting from the
HEC’s private data (Section 4.1). However, our original parallel GC
design used global work queues for load-balancing (Marlow et al.
2008). This is a poor choice for locality, because the link between
the CPU that copies the data and the CPU that scans it for roots
is lost. To tackle this, we modified our parallel GC design to use
work-stealing queues. The benefits of this are threefold:

1. Contention is reduced.

2. Locality is improved: a CPU will take work from its own queue
in preference to stealing. Local work is likely to be in the CPU’s
cache, because it consists of objects that this CPU recently
copied.

3. We can easily disable load-balancing entirely, by opting not to
steal any work from other CPUs. This trades parallelism in the
GC for locality.

The use of work-stealing queues for load-balancing in parallel
GC is a well-known technique (Flood et al. 2001), however what
has not been studied before is the trade-off between whether to do
load-balancing at all or not for parallel programs. We will measure
our benchmarks in three configurations:

• The baseline is our best system, with parallel GC turned off.
• PARGC1: using parallel GC in the old generation only, with

load-balancing.
• PARGC2: using parallel GC in both young and old generations,

with load-balancing.

• PARGC3: using parallel GC in both young and old generations,
without load-balancing.

PARGC1 and PARGC2 use work-stealing for load-balancing,
PARGC3 uses no load-balancing. In terms of locality, PARGC2
will improve locality significantly by traversing most of the data
reachable by parallel threads on the same CPU as the thread is
executing. PARGC3 will improve locality further by not moving
data from one CPU’s cache to another in an attempt to balance the
work of GC.

Figures 8 and 9 present the results, for 4 cores and 7 cores
respectively. There are several aspects to these figures that are
striking:

• partree delivers an 80% improvement with PARGC3 on 7
cores, with most of the benefit coming with PARGC2. Clearly
locality is vitally important in this benchmark.

• gray and mandel degrade significantly with PARGC2, recover-
ing with PARGC3. Load-balancing appears to be having a sig-
nificant negative effect on performance here. These are bench-
marks that don’t achieve full speedup, so it is likely that when a
GC happens, idle CPUs are stealing data from the busy CPUs,
harming locality more than would be the case if all the CPUs
were busy.

• PARGC3 is almost always better than the other configurations.

There are of course other possible configurations. For instance,
parallel GC in the old generation only without load balancing, or
parallel GC in both generations but with load-balancing only in
the old generation. We have performed informal measurements on
these and other configuarations and found that on average they
performed less well than PARGC3, although for individual bench-
marks it is occasionally the case that a different configuration is a
better choice.

Future versions of GHC will use PARGC3 by default for paral-
lel execution, although it will be possible to override the default and
select any combination of parallel/sequenctial GC for each genera-
tion with and without load-balancing.

7. The space behaviour of par
The spark pool should ideally contain only useful work, and we
might hope that the garbage collector would assist the scheduler by
removing useless sparks from the spark pool.

One sure-fire way to do so is to remove any fizzled sparks. A
spark has fizzled if the thunk to which it refers it has already been
evaluated, so that running the spark would terminate immediately.
Indeed, we expect most sparks to fizzle. The par operation creates
opportunities for parallel evaluation but, if the machine is busy, few
of these opportunities are taken up. For example, consider

x ‘par‘ (y ‘pseq‘ (x+y))

This sparks the thunk x (adding it to the spark pool), evaluates
y, and then adds x and y. The addition operation forces both its
arguments, so if the sparked thunk x has not been taken up by some
other processor, the addition will evaluate it. In that case, the spark
has fizzled.

Clearly a fizzled spark is useless, and the garbage collector
can (and does in GHC 6.10) discard them, but which other sparks
should the garbage collector retain? Two policies immediately
spring to mind, that we shall call ROOT and WEAK:

• ROOT: Treat (non-fizzled) sparks as roots for the garbage col-
lector. That is, retain all such sparks and the graph they point
to.
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Total MUT GC Total Fizzled
time(s) time(s) time(s) sparks Sparks

Strat. 10.7 5.1 5.7 1000000 0
No Strat. 6.4 5.2 1.2 1000000 999895

Figure 10. Comparison of ray using strategies vs. no strategies

• WEAK: Only retain (non-fizzled) sparks that are reachable
from the roots of the program.

The problem is, neither of these policies is satisfactory. WEAK
seems attractive, because it lets us discard sparks that are no longer
required by the program. However, the WEAK policy is completely
incompatible with strategies. Consider the parList strategy:

parList :: Strategy a -> Strategy [a]
parList strat [] = done
parList strat (x:xs) = strat x ‘par‘ parList strat xs

Each spark generated by parList is a thunk for the expression
“strat x”; this thunk is not shared, since it is created uniquely
for the purposes of creating the spark, and hence can never fiz-
zle. Hence, the WEAK policy will discard all sparks created by
parList, which is obviously undesirable.

So, what about the ROOT policy? This is the policy that is
used in existing implementations of GpH, including GUM (Trinder
et al. 1996) and GHC. However, it leads to the converse problem:
too many sparks are retained, leading to space leaks. Consider the
expression

sum (parList rnf (map expensive [1..100000]))

With the ROOT policy we will retain all of the sparks created by
parList, and hence lose no parallelism. But if there are not enough
processors to evaluate all of the sparks, they will never be garbage
collected, even after the sum is complete! They remain in the spark
pool, retaining the list elements that they point to. This can lead to
serious space leaks3.

To quantify the effect, we compared two versions of the ray
benchmark. The first version uses parBuffer from the standard
strategies library, applied to the rwhnf strategy, while the second
uses a modified version of parBuffer which avoids the space leak
(we will explain how the modified version works in Section 7.2).
We ran both versions of the program on a single CPU, to illustrate
the degenerate case of having too few CPUs to use the available par-
allelism. Figure 10 gives the results; MUT is the amount of “muta-
tor time” (execution time excluding garbage collection), GC is the
time spent garbage collecting. We can see that with the strategies
version, no sparks fizzle, and the GC time suffers considerably as a
result4.

Implementations using the ROOT policy have been around for
quite a long time, and yet the problem has only recently come to
light. Why is this? We are not sure, but postulate that the applica-
tions that have been used to benchmark these systems do not suffer
unduly from the space leaks, perhaps because the amount of extra
space retained is small, and there is little or no speculation involved.
If there are enough CPUs to use all the parallelism, then no space
leaks are observed; the problem comes when we want to write a
single program that works well when run both sequentially and in
parallel.

Are there any other policies that we should consider? Perhaps
we might try to develop a policy along the lines of “discard sparks

3 In fact, this space leak was reported to the GHC team as a bug, http:
//hackage.haskell.org/trac/ghc/ticket/2185.
4 Why don’t all the sparks fizzle in the second version? In fact the runtime
does manage to execute a few sparks while it is waiting for IO to happen.

that share no graph with the main program”. This is clearly an im-
provement on the ROOT policy because it lets us discard sparks that
share nothing with the main program. However, it is quite difficult
to establish whether there is any sharing between the spark and the
main program, since this entails establishing a “reaches” property,
where each closure in the graph is marked if it can reach certain
other closures (namely the main program). This is exactly the op-
posite of the property that a garbage collector normally establishes,
namely “is reachable from”, and is therefore at odds with the way
the garbage collector normally works. It requires a completely new
traversal, perhaps by reversing all the pointers in the graph.

Even if we could implement this strategy, it does not completely
solve the problem. A spark may share data with the main program,
but that is not enough: it has to share unevaluated data, and that
unevaluated data must be part of what the spark will evaluate.
Moreover, perhaps we still want to discard sparks that are retaining
a lot of unshared data, but still refer to a small amount of shared
data, on the grounds that the cost of the space leak outweighs the
benefits of any possible parallelism.

7.1 Improving space behaviour of sparks
One way to improve the space behaviour of sparks is to use the
WEAK policy for garbage collection. This guarantees, by construc-
tion, that the spark pool does not leak any space whatsoever. How-
ever, this choice would affect the programming model. In partic-
ular we can no longer use the strategies abstraction as it stands,
because every strategy combinator involves sparking unique, un-
shared thunks, which WEAK will discard immediately. It is for this
reason that GHC still uses the ROOT policy: if we were to switch to
WEAK, then existing code using Strategies would lose parallelism.

We can continue to write parallel programs without space leaks
under the ROOT policy, as long as we observe the rule that all
sparks must be eventually evaluated. Then we can be sure that any
unused sparks will fizzle, and in this case there is no difference
between ROOT and WEAK. The following section describes how
to write programs in this way.

Nonetheless, we believe that in the long term the implemen-
tation should use the WEAK policy. The WEAK policy has one
distinct advantage over ROOT, namely that it is possible to write
programs that use speculative parallelism without incurring space
leaks. A speculative spark is by its nature one that may or may not
be eventually evaluated, and in order to ensure that such sparks are
eventually garbage collected if they turn out not to be required, we
need to use WEAK.

7.2 Avoiding space leaks with ROOT
We can still use strategy-like combinators with ROOT, but they
are no longer compositional. In the case of parList, if we simply
want to evaluate each element to weak-head-normal-form, we use
a specialised version of parList:

parListWHNF :: Strategy [a]
parListWHNF [] = done
parListWHNF (x:xs) = x ‘par‘ parListWHNF xs

Now, as long as the list we pass to parListWHNF is also evaluated
by the main program, the sparks will all be garbage collected as
usual. The rule of thumb is to always put a variable on the left of
par.

Reducing the granularity with parListChunk is a common
technique. The idea is for each spark to evaluate a fixed-size chunk
of the list, rather than a single element. To do this without incurring
a space leak means that the sparked list chunks must be concate-
nated into a new list, and returned to the caller:

parListChunkWHNF :: Int -> [a] -> [a]
parListChunkWHNF n = concat
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. (‘using‘ parListWHNF)

. map (‘using‘ seqList)

. chunk n

where chunk :: Int -> [a] -> [[a]] splits a list into chunks
of length n.

A combinator that we find ourselves using often is parBuffer,
which behaves like parList except that it does not traverse the
whole list eagerly; it sparks a fixed number of elements initially,
and then sparks subsequent elements as the list is consumed. This
formulation works particularly well with programs that produce
output as a lazy list, since it allows us to retain the constant-space
property of the program while taking advantage of parallelism. The
disadvantage is that we have to pick a buffer size, and the best
choice of buffer size might well depend on how many CPUs we
have available.

Our modified version of parBuffer that avoids space leaks is
parBufferWHNF:

parBufferWHNF :: Int -> [a] -> [a]
parBufferWHNF n xs = return xs (start n xs)

where
return (x:xs) (y:ys) = y ‘par‘ (x : return xs ys)
return xs [] = xs

start !n [] = []
start 0 ys = ys
start !n (y:ys) = y ‘par‘ start (n-1) ys

7.3 Compositional strategies revisited
We can recover a more compositional approach to strategies by
changing their type. The existing Strategy type is defined thus:

type Strategy a = a -> Done

Suppose that instead we define Strategy as a projection, like
this:

type Strategy a = a -> a

then a Strategy can do some evaluation and sparking, and re-
turn a new a. In order to use this new kind of Strategy effectively,
we need a new version of the par combinator:

spark :: Strategy a -> a -> (a -> b) -> b
spark strat a f = x ‘par‘ f x

where x = strat a ‘pseq‘ a

The spark combinator takes a strategy strat, a value a, and a
continuation f. It creates a spark to evaluate strat a, and then
passes a new object to the continuation with the same value as
a. When evaluated, this new object will cause the spark to fizzle
and be discarded. Now we can recover compositional parList and
seqList combinators:

parList :: Strategy a -> Strategy [a]
parList strat xs = foldr f [] xs

where f x xs = spark strat x $ \x -> xs ‘pseq‘ x:xs

seqList :: Strategy a -> Strategy [a]
seqList strat xs = foldr seq ys ys

where ys = map strat xs

and indeed this works quite nicely. Note that parList requires
linear stack space; it is also possible to write a version that only
requires linear heap space, but that requires two traversals of the
list.

Here is parListChunk in the new style:

parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat xs = ys ‘pseq‘ concat ys

where ys = parList (seqList strat) $ chunk n xs

4 cores
Program ∆ Time (%)
gray -2.1
mandel -1.0
matmult -7.8
parfib -1.0
partree +5.2
prsa -0.2
ray +1.5
sumeuler -1.2
Geom. Mean -0.9

7 cores
Program ∆ Time (%)
gray +7.5
mandel +1.8
matmult +4.4
parfib -8.6
partree +9.5
prsa -0.1
ray +0.2
sumeuler +1.7
Geom. Mean +1.9

Figure 11. The effect of eager black-holing

8. Thunks and black holes
Suppose that two Haskell threads, A and B, begin evaluation of
a thunk t simultaneously. Semantically, it is acceptable for them
both to evaluate t, since they will get the same answer (Harris et al.
2005); but operationally it is better to avoid this duplicated work.
The obvious way to do so is to lock every thunk when starting
evaluation, but that is expensive; measurements in the earlier cited
work demonstrate an increase in execution time of around 50%.
So we considered several variants that trade a reduced overhead
against the risk of duplicated work:

EagerBH: immediately on entry, thread A overwrites t with a
black hole. If thread B sees a black hole, it blocks until A per-
forms the update (Section 8.1). The “window of vulnerability”,
in which a second thread might start a duplicate evaluation, is
now just a few instructions wide. The cost compared to sequen-
tial execution is an extra memory store on every thunk entry.

RtsBH: enlists the runtime system, using the scheme described
in Harris et al. (2005). The idea is to walk a thread’s stack
whenever it returns to the scheduler, and “claim” each of the
thunks under evaluation using an atomic instruction. If a thread
is found to be evaluating a thunk already claimed by another
thread, then we suspend the current execution and put the thread
to sleep until the evaluation is complete. Since every thread will
return to the scheduler at regular intervals (say, to do garbage
collection), this ensures that we cannot continue to evaluate
the same thunk in multiple threads indefinitely. The overhead
is much less than locking every thunk because most thunks are
entered, evaluated, and updated during a single scheduler time-
slice.

PostCheck: As Harris et al. (2005) points out, if two threads both
succeed in completing the evaluation of the same thunk, and
its value itself contains more thunks, there is a danger that an
unbounded amount of work can be duplicated. The PostCheck
strategy adds a test just before the update to check whether the
thunk has already been updated by another thread. This test
does not use an atomic instruction, but reduces the chance of
further duplicate work taking place.

In our earlier work (Harris et al. 2005) we measured of the over-
heads of locking every thunk, but said nothing about the overheads
or work-duplication of the other strategies.

GHC 6.10.1 implements RtsBH by default. Figure 11 shows
the additional effect of EagerBH on our benchmark programs, for
4 and 7 cores. As you might expect, the effect is minor, because
RtsBH catches almost all the cases that EagerBH does, except for
very short-lived thunks which do not matter much anyhow. Fig-
ure 12 shows how many times RtsBH catches a duplicate com-
putation in progress, both with and without adding EagerBH. As
we can see, without EagerBH there are occasionally a substantial
number of duplicate evaluations (eg. in ray), but EagerBH reduces
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RtsBH +
Program RtsBH EagerBH
gray 0 0
mandel 3 0
matmult 5 5
parfib 70 1
partree 3 3
prsa 45 0
ray 1261 0
sumeuler 0 0

Figure 12. The number of duplicate computations caught

that number to almost zero. In ray, although we managed to elim-
inate a large number of duplicate evaluations using EagerBH, the
effect on overall execution time was negligible: this program cre-
ates 106 tiny sparks, so 1200 duplicate evaluations has little impact.
In fact, with the fine granularity in this benchmark, it may be that
the cost of suspending the duplicate evaluation and blocking the
thread outweighs the cost of just duplicating the computation.

To date we have not measured the effect of PostCheck. We
expect it to have no effect on these benchmarks, especially in
combination with EagerBH. However, we have experienced the
effect of unbounded duplicate work in other programs; one good
example where it can occur is in this version of parMap:

parMap :: (a -> b) -> [a] -> [b]
parMap f [] = []
parMap f (x:xs) = fx ‘par‘ (pmxs ‘par‘ (fx:pmxs))

where fx = f x
pmxs = parMap f xs

This function sparks both the head and the tail of the list, instead
of traversing the whole list sparking each element as in the usual
parMap. The duplication problem occurs if two threads evaluate the
pmxs thunk: then the tail of the list is duplicated, possibly resulting
in a large number of useless sparks being created.

8.1 Blocking on a black hole
When a thread A tries to evaluate a black hole, it must block until
the thread currently evaluating the black hole (thread B) completes
the evaluation, and overwrites the thunk with (an indirection to)
its value. In earlier implementations (before 6.6) we arranged that
thread B would attach its TSO to the thunk, so that thread A
could re-awaken B when it performed the update. But that requires
expensive synchronisation on every update, in case the thunk by
now has a sleeping thread attached to it.

Since thunk updates are very common, but collisions (in which
a sleeping thread attaches itself to a thunk) are very rare, GHC 6.10
instead optimises for the common case. Instead of attaching itself to
the thunk, the blocked thread B simply polls the thunk, waiting for
the update. Since a thunk can only be updated once, an update can
therefore be performed without any synchronisation whatsoever,
provided that writes are not re-ordered. Our earlier work (Harris
et al. 2005) discusses these synchronisation issues in much more
detail.

GHC 6.10 maintains a single, global Black Hole Pool, which
the HECs poll when they are otherwise idle, and at least once per
GC. We have considered two alternative designs: (a) privatising the
Black Hole Pool to each HEC; and (b) using the thread scheduler
directly, by making the blocked thread sleep and retry the evalua-
tion when it reawakens. We have not yet measured these alterna-
tives but, since contention is rare (Figure 12), they will probably
only differ in extreme cases.

4 cores
Program ∆ Time (%)
gray +2.9
mandel +4.2
matmult +42.1
parfib -0.3
partree +3.3
prsa -0.5
ray -5.4
sumeuler -0.2
Geom. Mean +5.0

7 cores
Program ∆ Time (%)
gray +2.9
mandel +1.2
matmult -0.0
parfib +7.5
partree +7.0
prsa -1.5
ray -14.4
sumeuler +1.2
Geom. Mean +0.3

Figure 13. Disabling thread migration

9. Load balancing and migration
In this section we discuss design choices concerning which HEC
should run which Haskell threads.

9.1 Sharing runnable threads
In the current implementation, while we (now) use work-stealing
for sparks, we use work-pushing for threads. That is, when a HEC
detects that it has more than one thread in its Run Queue and there
are other idle HECs, it distributes some of the local threads to the
other HECs. The reason for this design is mostly historical; we
could without much difficulty represent the Run Queue using a
work-stealing queue and thereby use work-stealing for the load-
balancing of threads.

We measured the effect that automatic thread migration has on
the performance of our parallel benchmarks. Figure 13 shows the
effect of disabling automatic thread migration, against a baseline
of the PARGC3 configuration (Section 6.4). Since these are par-
allel, rather than concurrent, programs, the only way that multiple
threads can exist on the Run Queue of a single CPU is when a
thread becomes temporarily blocked (on a blackhole, Section 8.1),
and then later becomes runnable again. As we can see from the re-
sults, often allowing migration makes no difference. Occasionally
it is essential: for example matmult on 4 cores. And occasionally,
as in ray, allowing migration leads to worse performance, possibly
due to lost locality.

Whether to allow migration or not is a runtime flag, so the
programmer can experiment with both settings to find the best one.

9.2 Migrating on wakeup
A blocked thread can be woken up for various reasons: if it is
blocked on a black hole, it is woken up when some HEC notices
that the black hole has now been evaluated (Section 8.1); if it is
blocked on an empty MVar, then it can be unblocked when another
thread performs a putMVar operation on that MVar.

When a thread is woken up, if it was previously running on
another HEC, we have a choice: it can be placed on the Run Queue
of the current HEC (hence migrating it), or we could arrange to
awaken it on the HEC it was previously running on. In fact, we
could wake it up on any HEC, but typically these two options are
the most profitable.

Moving the thread to the current HEC might be advantageous if
the thread is involved in a series of communications with another
thread on this HEC: context-switching between two threads on the
same HEC is particularly cheap. However, locality might also be
important: the thread might be referencing data that is in the cache
of the other HEC.

In GHC we take locality seriously, so our default is not to mi-
grate awoken threads to the current CPU. For parallel programs, it
is never worthwhile to change this setting, at least with the current
implementation of black holes, since it is essentially random which
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HEC awakens a blocked thread. If we were to change the imple-
mentation of black holes such that a thread can tell when an update
should wake a blocked thread (perhaps by using a hash table to map
the address of black holes to blocked threads), then there might be
some benefit in migrating the blocked thread to the CPU on which
the value it was waiting for resides.

10. Benchmarks and experimental setup
Our test system consists of 2 quad-core Intel Xeon(R) E5320 pro-
cessors at 1.6GHz. Each pair of cores shares 4MB of L2 cache, and
there is 16GB of system memory. The system was running Fedora
9. Although the OS was running in 64-bit mode, we used 32-bit
binaries for our measurements (programs compiled for 64-bit tend
to place more stress on the memory system and garbage collector
resulting in less parallelism). In all cases we ran the programs five
times and took the average wall-clock execution time.

Our benchmarks consist of a selection of small-to-medium-
sized Parallel Haskell programs:

• parfib: the ubiquitous parallel fibonacci function, included here
as a sanity test to ensure that our implementation is able to
parallelise micro-benchmarks. The parallelism is divide-and-
conquer-style, using explicit par and pseq.

• sumeuler: the sum of the value of Euler’s function applied to
each integer up to a given bound. This is a map/reduce style
problem: applications of the Euler function can be performed in
parallel, and the results must be summed (Trinder et al. 2002).
The parallelism is expressed using parListChunk from the
strategies library.

• matmult: A naive matrix-multiply algorithm. The matrix is
represented as a [[Int]]. The parallelism is expressed using
parListChunk.

• ray: A ray-tracer benchmark5. The parallelism is expressed
using parBuffer, and is quite fine-grained (each pixel to be
rendered is a separate spark).

• gray: Another ray-tracing benchmark, this time taken from an
entry6 in the ICFP’00 programming contest. Only the rendering
part of the program has been parallelised, using a parBuffer
as above. According to time profiling, the program only spends
about 50% of its time in the renderer, so we expect this to limit
the parallelism we can achieve. The parallelism is expressed
using a single parBuffer in the renderer.

• prsa: A parallel RSA message encoder, encoding a 500KB
message. Parallelism is again expressed using parBuffer.

• partree: A parallel map and fold over a tree. The program orig-
inates in the GUM benchmark suite, and in fact appears to be
badly written: it is quadratic in the size of the tree. Neverthe-
less, it does appear to run in parallel, so we used the program
unmodified for the purposes of benchmarking.

• mandel: this is a mandelbrot-set program originating in the
nofib benchmark suite (Partain 1992). It generates a lazy list of
pixel data (for a 1024x1024 scene), in a similar way to the ray
tracer, and it was parallelised in the same way with the addition
of parBuffer. The difference in this case is that the parallelism
is more coarse-grained: each scan-line of the result is a separate
spark.

5 This program has a long history. According to comments in the source
code, it was “taken from Paul Kelly’s book, adapted by Greg Michaelson
for SML, converted to (parallel) Haskell by Kevin Hammond”.
6 from the Galois team

Figure 14. A slow synchronisation

These programs are all small, are mostly easy to parallelise, and
are not highly optimised, so the results we report here should be
interpreted as suggestive rather than conclusive. Nevertheless, our
goal has not been to optimise the programs, but rather to optimise
the implementation to make existing programs parallelise better.
Furthermore, smaller benchmarks have their uses:

• Small benchmarks show up in high relief interesting differences
in the behaviour of our runtime and execution model. These
differences would be less marked had we used only large pro-
grams.

• We know that most of these programs should parallelise well, so
any lack of parallelism is more likely to be as a result of choices
made in the language implementation than in the program itself.
Indeed, the lack of linear speedup in Figure 1 shows that we still
have plenty of room for improvement.

10.1 Profiling
To help understand the behaviour of our benchmark programs we
developed a graphical viewer called ThreadScope for event infor-
mation generated by the runtime system. The viewer is modeled
after circuit waveform viewers with a profile drawn with time on
the x-axis and HEC number on the y-axis. In each HEC’s timeline,
the bar is coloured solid black when the HEC is running Haskell
code with the thread ID inside the box, and gray when it is garbage
collecting. Events, such as threads blocking or being woken up,
are indicated by labels annotating the timeline when the view is
zoomed enough.

This visualisation of the execution is immensely useful for be-
ing able to quickly identify problem areas. For example, when we
ran our benchmarks on all 8 cores of our 8-core machine, we ex-
perienced inexplicable drops in performance. Figure 14 shows one
problem area as seen in the profile viewer. In the middle of the pic-
ture there is a long period where one HEC has initiated a GC, and
is waiting for the other HECs to stop. The initiating/waiting HEC
has a white bar, the HECs that have already stopped and are ready
to GC are shown in gray. One HEC is running (black with thread
ID 164) during this period, indicating that it is apparently running
Haskell code and has not responded to the call for a GC. In fact, the
OS thread running this HEC has been descheduled by the OS, so
does not respond for a relatively long period. The same pattern re-
peats many times during the execution, having a significant impact
on the overall runtime.

This experience does illustrate that our runtime is particularly
sensitive to problems such as this due to the relatively high fre-
quency of full synchronisations needed for GC, and that tackling
independent GC (Section 12.1) should be a high priority.
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11. Related work
The design space for language features to support implict paral-
lelism and the underlying run-time system is very large. Here we
identify just a few systems that make different design decisions and
trade-offs from the GHC run-time system.

Like GHC the Manticore (Fluet et al. 2008b,a) system also sup-
ports implicit and explicit fine-grained parallelism which in turn
has been influenced by previous work on data parallel languages
like NESL (Blelloch et al. 1994) and Nepal/DPH (Chakravarty
et al. 2001). Unlike NESL or Nepal/DPH, GHC also implements
support for explicit concurrency as does Manticore. Many of the
underlying implementation choices made for GHC and Manti-
core are interchangeable e.g. Manticore uses a partially shared
heap whereas GHC uses a totally shared heap. Manticore however
presents quite a different programming model based on parallel
data structures (e.g. tuples and arrays) which provide a fork-join
pattern of computation as well as a parallel case expression which
can introduce non-determinism. Neither GHC nor Manticore sup-
port implicit parallelism without the need for user annotations
which has been implemented in other functional languages like
Id (Nikhl 1991), pH (Nikhl and Arvind 2001) and Sisal (Gaudiot
et al. 1997).

STING (Jagannathan and Philbin 1992) is a system that supports
multiple parallel language constructs for a dialect of SCHEME
through three layers of process abstraction as well as special sup-
port for specifying scheudling policies. We also intend to modify
GHC’s infrasturcture to allow different scheduling policies to be
composed together in a flexible manner (Li et al. 2007a).

GpH (Trinder et al. 1998) extended Haskell98 to introduce
the parallel (par) and sequential (seq) coordination primitives
and provides strategies for controlling the evaluation order. Unlike
semi-implicit parallelism annotations in Haskell which identify op-
portunities for parallelsim, in Eden (Loogen et al. 2005) one ex-
plicitly creates processes which are always executed concurrently.
GUM (Trinder et al. 1996) targets distributed systems and is based
on message passing.

In our work we profiled the execution time of Haskell threads
and garbage collection. However, we will also need to perform
space profiling and the work on the MLton project on semantic
space profiling (Spoonhower et al. 2008) represents an interesting
approach for a strict language.

Erlang (Armstrong et al. 1996) provides isolated threads which
communicate through a mailbox mechanism with pattern match-
ing used to select messages of interest. These design decisions
have a subtantial effect on the design of the run-time system.
Eden (Loogen et al. 2005) provides special annontations to control
parallel evaluation of processes.

Cilk (Blumofe et al. 2001) is an imperative programming lan-
guage based on C which also supports fine grain parallelism in a
fork-join manner by spawning off parallel invocations of proce-
dures. Like GHC Cilk also performs work-stealing for load balanc-
ing. The spawn feature of Cilk, expressions bound with pcase in
Manticore and sparks in GHC can all be considered to be instances
of futures.

12. Conclusion and future work
While we have achieved some significant improvements in parallel
efficiency, our work clearly has some way to go; several bench-
marks do not speed up as much as we might hope. Our focus in the
future will therefore continue to be on using profiling tools to iden-
tify problem areas, and using those results to direct our attention to
appropriate areas of the runtime system and execution model.

The work on implicit parallelization described in Harris and
Singh (2007) may benefit from the recent changes to the GHC

run-time and we are considering re-running the benchmarks to
measure any improvements. In particular we expect benchmarks
that perform a lot of garbage collection to benefit from the parallel
garbage collector.

It is clear from our investigation of the programming model in
Section 7 that we should change the GC policy for sparks from
ROOT to WEAK, but we must also revisit the Strategies abstraction
and develop a new library that works effectively under WEAK.

12.1 Independent GC
Stop-the-world GC will inevitably become more of a bottleneck
as the number of cores increases. There are known techniques for
doing CPU-independent GC (Doligez and Leroy 1993), and these
techniques are used in systems such as Manticore (Fluet et al.
2008a).

We fully intend to pursue CPU-independent GC in the future.
However this is unlikely to be an easy transition. CPU-independent
GC replaces direct sharing by physical separation and explicit com-
munication. This leads to trade-offs; it isn’t a straightforward win.
More specifically, CPU-independent GC requires a local-heap in-
variant, namely that there are no pointers between local heaps, or
from the global heap into any local heap. Ensuring and maintain-
ing this invariant introduces new costs and complexities into the
runtime execution model.

On the other hand, as the number of cores in modern CPUs
increases, the illusion of shared memory begins to break down.
We are already experiencing severe penalties for losing locality
(Section 6.4), and it is likely that these will only get worse in the
future. Hence, moving to more explicitly-separate heap regions is a
more honest reflection of the underlying memory architecture, and
is likely to allow the implementation to make intelligent decisions
about data locality.
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