
Haskell in the datacentre!

Simon Marlow
Facebook
(Copenhagen, April 2019)

Haskell powers Sigma
• A platform for detection

• Used by many different teams
• Mainly for anti-abuse

• e.g. spam, malicious URLs
• Machine learning + manual rules
• Also runs Duckling (NLP application)

• Implemented mostly in Haskell
• Hot-swaps compiled code

𝚺

Clients

Other Services

At scale...
• Sigma runs on thousands of machines

• across datacentres in 6+ locations
• Serves 1M+ requests/sec
• Code updated hundreds of times/day

How does Haskell help us?
• Type safety: pushing changes with confidence
• Seamless concurrency
• Concise DSL syntax
• Strong guarantees:

• Absence of side-effects within a request
• Correctness of optimisations

• e.g. memoization and caching
• Replayability
• Safe asynchronous exceptions

This talk: Performance!
• Our service is latency sensitive
• So obviously end-to-end performance matters

• but it’s not all that matters

This talk: Performance!
• Our service is latency sensitive
• So obviously end-to-end performance matters

• but it’s not all that matters
• Utilise resources as fully as possible

This talk: Performance!
• Our service is latency sensitive
• So obviously end-to-end performance matters

• but it’s not all that matters
• Utilise resources as fully as possible
• Consistent performance (SLA)

• e.g. “99.99% within N ms”

This talk: Performance!
• Our service is latency sensitive
• So obviously end-to-end performance matters

• but it’s not all that matters
• Utilise resources as fully as possible
• Consistent performance (SLA)

• e.g. “99.99% within N ms”
• Throughput vs. latency

Not a single highly-tuned application

• One platform, many applications
• under constant development by many teams

• Complexity and rate of change mean challenges for
maintaining high performance.

• Lots of techniques
• both “social” and technical

Tackle performance at the...
• User level

• helping our users care about performance
• Source level

• abstractions that encourage performance
• Runtime level

• low-level optimisations and tuning
• Service level

• making good use of resources

1. Performance at the
2. user level

Sigma Engine

Haxl

User code

Data Sources

Haskell

C++ / Haskell

Connecting users with perf
• Users care firstly about functionality

• So we made a DSL that emphasizes concise
expression of functionality, abstracts away from
performance (more later)

• but we can’t insulate clients from performance issues
completely...

Photo: Scott Schiller, CC by 2.0

Fetch all the data!

Log everything!

All the time!

Photo: Greg Lobinski, CC BY 2.0

numCommonFriends, two ways
numCommonFriends a b = do

 af <- friendsOf a

 aff <- mapM friendsOf af

 return (count (b `elem`) aff)

numCommonFriends a b = do

 af <- friendsOf a

 bf <- friendsOf b

 return (length (intersect af bf))

When regressions happen
• Problem: code changes that

regress performance
• Platform team must diagnose + fix
• This is bad:

• time consuming, platform team is a
bottleneck

• error prone
• some regressions still slip through

Time

Latency

Oops

2pm yesterday

Goal: make users care about perf
• But without getting in the way, if possible
• Make perf visible when it matters

• avoid regressions getting into production
• Make perf hurt when it really matters

Offline profiling is too hard
• Accuracy requires

• compiling the code (not using GHCi)
• running against representative production data
• comparing against a baseline

• don’t want to make users go through this themselves

Our solution:
Experiments

Photo:usehung, CC BY 2.0

Experiments: self-service profiling
• At the code review stage, run automated

benchmarks against production data, show the
differences

• Direct impact of the code change is visible in the
code review tool

• Result: many fewer perf regressions get into
production

More client-facing profiling
• Can’t run full Haskell profiling in production

• 2x perf overhead, at least
• Poor-man’s profiling:

• getAllocationCounter counts per-thread allocations
• instrument the Haxl monad
• manual annotations (withLabel “foo” $ …)
• some automatic annotations (top level things)

Make perf hurt when it really matters

• Beware elephants

• (unexpectedly large requests that degrade
performance for the whole system)

How do elephants happen?
• Accidentally fetching too much data
• Accidentally computing something really big

• (or an infinite loop)
• Corner cases that didn’t show up in testing
• Adversary-controlled input (avoid where possible)

Kick the elephants off the server

• Allocation Limits
• Limit on the total allocation of a request
• Counts memory allocation, not deallocation
• Allocation is a proxy for work

• Catches heavyweight requests (“elephants”)
• And (some) infinite loops

A not-so-gentle nudge
• As well as being an important back-stop to keep the

server healthy…
• This also encourages users to optimise their code

• ...and debug those elephants
• which in turn, encourages the platform team to provide

better profiling tools

Performance at the
source level

Concurrency matters
• “fetch data and compute with it”
• A request is a graph of data fetches and

dependencies
• Most systems assume the worst
• there might be side effects!
• so execute sequentially unless you

explicitly ask for concurrency.

Concurrency matters
• But explicit concurrency is hard
• Need to spot where we can use it
• Clutters the code with operational

details
• Refactoring becomes harder, and is

likely to get the concurrency wrong

Concurrency matters
• What if we flip the assumption?
• Assume that there are no side effects
• Fetching data is just a function
• Now we are free to exploit concurrency

as far as data dependencies allow.
• Enforce “no side-effects” with the type

system and module system.

numCommonFriends a b = do
 fa <- friendsOf a
 fb <- friendsOf b
 return (length (intersect fa fb))

friendsOf a friendsOf b

length (intersect ...)

FP with remote data access
• Treat data-fetching as a function

• Implemented as a (cached) data-fetch
• Might be performed concurrently or batched with

other data fetches
• From the user’s point of view, “friendsOf x” always

has the same value for a given x.

friendsOf :: Id -> Haxl [Id]

Why friendsOf :: Id -> Haxl [Id] ?

• Data-fetches can fail
• Haxl includes exceptions
• Exceptions must not prevent concurrency (not EitherT)

• Haxl monad is where we implement concurrency
• otherwise it would have to be in the compiler

How does concurrency in Haxl work?
• By exploiting Applicative:

(>>=) :: Monad m => m a → (a → m b) → m b

dependency

independent

(<*>) :: Applicative f => f (a → b) → f a → f b

Applicative concurrency
• Applicative instance for Haxl allows data-fetches in

both arguments to be performed concurrently
• Things defined using Applicative are automatically

concurrent, e.g. mapM:

• (details in Marlow et. al. ICFP’14)

friendsOfFriends :: Id -> Haxl [Id]
friendsOfFriends x = concat <$> mapM friendsOf x

Clones!
• Stitch (Scala; @Twitter; not open source)
• clump (Scala; open source clone of Stitch)
• Fetch (Scala; open source)
• Fetch (PureScript; open source)
• muse (Clojure; open source)
• urania (Clojure; open source; based on muse)
• HaxlSharp (C#; open source)
• fraxl (Haskell; using Free Applicatives)

Haxl solves half of the problem
• What about this?

• Should we force the user to write

numCommonFriends a b = do
 fa <- friendsOf a
 fb <- friendsOf b
 return (length (intersect fa fb))

numCommonFriends a b =
 (length . intersect)
 <$> friendsOf a
 <*> friendsOf b

• Maybe small examples are OK, but this gets really
hard to do in more complex cases

• And after all, our goal was to derive the concurrency
automatically from data dependencies

do x1 ← a

 x2 ← b x1

 x3 ← c

 x4 ← d x3

 x5 ← e x1 x4

 return (x2,x4,x5)

do ((x1,x2),x4) <- (,)

 <$> (do x1 <- a

 x2 <- b x1

 return (x1,x2))

 <*> (do x3 <- c; d x3)

 x5 <- e x1 x4

 return (x2,x4,x5)

• Have the compiler analyse the do statements
• Translate into Applicative wherever data

dependencies allow it

{-# LANGUAGE ApplicativeDo #-}

numCommonFriends a b = do
 fa <- friendsOf a
 fb <- friendsOf b
 return (length (intersect fa fb))

numCommonFriends a b =
 (length . intersect)
 <$> friendsOf a
 <*> friendsOf b

One design decision
How should we translate this?

do x1 <- a
 x2 <- b
 x3 <- c x1
 x4 <- d x2
 return (x3,x4)

a b c d

((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

(,) <$> (A >>= \x1 -> C[x1])
 <*> (B >>= \x2 -> D[x2])

(A | B) ; (C | D)

(A ; C) | (B ; D)

Which is best?
((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

(,) <$> (A >>= \x1 -> C[x1])
 <*> (B >>= \x2 -> D[x2])

More
concurrency

(A | B) ; (C | D)

(A ; C) | (B ; D)

What laws do we assume?
((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

(,) <$> (A >>= \x1 -> C[x1])
 <*> (B >>= \x2 -> D[x2])

valid for any
law-abiding

Monad

only valid for
commutative

Monads

• We chose to assume law-abiding Monads only
• This sometimes restricts the available concurrency
• If the user writes this instead, they get a better

result:

• ApplicativeDo is ultimately a heuristic compiler
optimisation, there are many ways to defeat it.

do x1 <- a
 x3 <- c x1
 x2 <- b
 x4 <- d x2
 return (x3,x4)

Should concurrency be the compiler’s job?

• When there are no (or few) side effects, implicit
concurrency is a better default
• More concise code
• Less brittle
• Easier to refactor
• Can still use explicit concurrency

• (via Applicative, mapM etc.)

Should concurrency be the compiler’s job?

• Against:
• IT’S INVISIBLE MAGIC
• Can miss opportunities
• Easy to go wrong when there are side-effects

What about side effects?
• In Sigma we cleanly separate effects
• Rules return actions to perform

• Even if you have a few side effects, explicit ordering is
possible, turn off ApplicativeDo or use >>=

myFunction =
 writeSomeData >>= _ ->
 readSomeData …

Caching & memoization

All data fetches are cached
• Cache lives for the request only
• So “friendsOf x” always returns the same result in a

given request
• This is liberating!

• never need to pass around fetched data
• just fetch it wherever you need it
• caching reduces coupling, increases modularity

• Cache enables record + replay for testing

Taking caching further
memo :: Key -> Haxl a -> Haxl a

• memoize an arbitrary “Haxl a” computation
• (again, within a request)

• Even more liberating!
• profile to find duplicate work, add memo
• no need to pass results around
• great for modularity

Performance at the
runtime level

Scheduling
• GHC uses an N/M threading model:

• N capabilities (think: OS thread)
• M Haskell threads (lightweight, or bound to OS thread)
• runtime scheduler attempts to load-balance M onto N

• Maximum real parallelism = N

Competing concerns
• N should be large enough to max out the CPU

• including Hyperthreaded cores (~30% of CPU)
• If GHC doesn’t schedule our M workers perfectly

onto the N capabilities, we waste some CPU
• Easiest way to fix this is to make N larger

• (give the scheduling problem to the OS)
• But...

Garbage Collection
• GHC uses parallel stop-the-world GC
• Running on the same N threads

• Problem: parallel GC degrades badly if N > #cores
• due to work-stealing

• So increasing N to counteract scheduling
imperfection causes GC to slow down

Solution: let GC use <N threads
• We added a new option, +RTS -qnn
• Limits the number of GC threads to n
• Picks dynamically at runtime which threads to use

• use busy threads for GC, leave idle threads asleep
• e.g. on a 16-core box we could use

 +RTS -N48 -qn16
and easily max out the CPU
provided we have enough worker threads

-qn is the default
• This worked so well, that I enabled -qn by default to

counteract the slowdown when N > #cores
• Benchmarks: -N8 -qn4 on 4-core laptop:

Aside: multiple processes?
• Could we run N processes instead?

• Avoids GC sync issues
• But sharing is much harder

• The server process has shared caches and process-level
state which would be harder to manage

• Monitoring, debugging etc. are easier with one process

Multiple heaps?
• aka the Erlang model
• Again, managing shared caches becomes harder
• But having local independently-collected heaps in

some form is the way forwards
• e.g. O’Caml’s multicore runtime

Let’s talk about… GC
• GHC has a parallel, generational, stop-the-world

copying collector
• Allocate like crazy, then stop and copy everything live
• We have to worry about:

• overall throughput
• pause time
• synchronising threads to stop-the-world

Improving throughput
• GC is a space/time tradeoff

• We improve throughput by using more memory
• More memory = fewer GCs

• But how is the memory divided up?
• By default, GHC divides nursery size evenly by N

capabilities
• This was fine for small nurseries (L2 cache sized)
• But we want a multi-GB nursery

Nurseries

Free

Used

Problem: capabilities allocate at different rates, so we
GC before we have filled all the memory

Solution: nursery chunks
• Divide the nursery into fixed-size chunks

• e.g. 4MB

Free

Used

Full Chunks

Empty Chunks

Nursery chunks
• GC when all the chunks are full
• Very little wastage
• Significantly reduced GC overhead

• We can optimise memory access further...

Main Memory

Processor Cores

Bus

Main Memory

Processor #1 Cores

Bus

Main Memory

Processor #2 Cores

Non-Uniform Memory Access (NUMA)

• Machine divided into nodes
• Accessing memory on the local node is faster (e.g.

2x)
• In the absence of any hints, the OS allocates

memory randomly, so we’ll get ~50% remote access

Observation
• Most memory access is to the nursery

• Since our nursery is much larger than the cache
• Most memory access is to recently allocated objects

• Opportunity:
• Ensure that nursery memory accesses are local

Free

Used

Empty ChunksFull Chunks

Node 0

Node 1

Capabilities

Does it help?
• Higher percentage of local memory access
• Could be better

• Where are the rest of the remote accesses?
• Tradeoff

• when the pool is empty, do we steal from the other
node, or run the GC?

Reducing pause times
• Some fraction of the heap data is mostly static
• In Sigma, it’s static configuration data

• needs to be cached, for fast access
• but rarely changes

• No point in having the GC copy this data on every
(major) collection

Added in GHC 8.2: compact regions!

• The compact value is treated as a single
object by the GC, so O(1)

• compact is O(n), similar overhead to GC

 compact :: a -> IO (Compact a)

 getCompact :: Compact a -> a takes an arbitrary
value and copies it
into a consecutive
region of memory

returns a reference
to the compacted
value

Compact unlocks new use cases
• Now we can have an arbitrary amount of Haskell data in the

heap, with zero GC overhead
• Some caveats:

• Data can’t contain functions, mutable things, ByteString
• Pay O(n) to update the data

• Why no functions?
• Functions might refer to CAFs

• Why no ByteString?
• Pinned memory :(

• A source of pain: callbacks from C/C++
• How can you implement an efficient Haskell wrapper

for a C++ API like this

Optimising FFI calls

void sendRequest(

Request &req,

std::function<void(Response&)> callback

);

The usual way
type HaskellCallback = Ptr Response -> IO ()

foreign import ccall “wrapper”

 mkCallback :: HaskellCallback

 -> IO (FunPtr HaskellCallback)

sendRequest :: Request -> IO (MVar Response)

sendRequest req = do

 mvar <- newEmptyMVar

 callback <- mkCallback $ \responsePtr -> do

 r <- unmarshal responsePtr

 putMVar r

 -- send the request, passing the callback

But this is slow...
• mkCallback has to generate some code

• and we have to free it later
• When C++ calls the callback

• Creates a new Haskell thread and runs it
• Will block if the GC is currently running
• Calls into Haskell are heavyweight

Faster async callbacks
• GHC exposes a new C API:

• Behaves just like

• But called from C/C++

void hs_try_putmvar (

 int capability,

 HsStablePtr sp

);
StablePtr (MVar ())

Hint

tryPutMVar :: MVar () -> IO ()

How to use it

• We need a callback wrapper on the C side to call
hs_try_putmvar()

• Memory to store the result can be Haskell-allocated
and GC’d, no need to free

receive :: MVar () -> Ptr Response -> IO Response

receive m p = do

 takeMVar m

 peek p

Furthermore...
• hs_try_putmvar() is non-blocking
• If it can do the putMVar immediately, it does
• If GC is in progress, or the capability is running, it

sends a message
• Callbacks blocking or failing is a source of problems:
hs_try_putmvar() avoids all that

• We saw some nice speed and scalability
improvements from this

Performance at the
service level

Performance tradeoffs
• For best throughput:

• Handle as many concurrent requests as we can fit in
the memory

• Defer GC as long as possible
• But these will negatively affect latency:

• the longer GC is deferred, the longer it takes
• GC is mostly O(live memory), but partially O(memory)

and O(time since last GC)

How to exploit this?
• Two instances of the service:

Latency
optimised

Throughput
optimised

Queue

Clients

Clients

How to exploit this?
• Two instances of the service:

Latency
optimised

Throughput
optimised

Queue

Clients

Clients

● Migrate clients to the
throughput-optimised
service when possible

Summary

Messages
• Abstract away from concurrency (Haxl + ApplicativeDo)
• Help users care about perf, and give them the tools to

understand it
• Exploit latency-insensitivity in clients
• Runtime tricks:

• GC scheduling, nursery chunks, NUMA, hs_try_putmvar,
Compact

We are hiring!
• Drop me an email: marlowsd@gmail.com

