Haskell In the datacentre!

Simon Marlow

Facebook
(Copenhagen, April 2019)

» » ’ »

RRRRRNYARE RN, SR I LTI ErY . &
711N u‘-ﬁ_,unun.i.nﬁhnh:l
...d‘.a..c»@--a..%%..c%.\ﬂnua.fw!‘\,.

\ AL . . 828 88883800 208888008800

[=
4
e
- i
- .
- e
.00

~ s 2222 ~-Ios-~s.-.\._?‘
: LELE T) R R 2]
ns *t et 1 3

4..A L LR T 336.-55’“?‘5..*

.............................

Haskell powers Sigma

» A platform for detection

» Used by many different teams

* Mainly for anti-abuse

e €.g. spam, malicious URLs
2 Machine learning + manual rules

» Also runs Duckling (NLP application)
* Implemented mostly in Haskell

@ @7 » Hot-swaps compiled code
v

Other Services

Clients

At scale...

» Sigma runs on thousands of machines
e across datacentres in 6+ locations

e Serves 1M+ requests/sec
» Code updated hundreds of times/day

How does Haskell help us?

* Type safety: pushing changes with confidence
» Seamless concurrency
» Concise DSL syntax

» Strong guarantees:

» Absence of side-effects within a request

» Correctness of optimisations
* €.J. memoization and caching

» Replayability
» Safe asynchronous exceptions

This talk: Performance!

» Our service is latency sensitive

* SO obviously end-to-end performance matters
 but it's not all that matters

This talk: Performance!

» Our service is latency sensitive

* SO obviously end-to-end performance matters
 but it's not all that matters

 Utilise resources as fully as possible

This talk: Performance!

» Our service is latency sensitive

* SO obviously end-to-end performance matters
 but it's not all that matters

 Utilise resources as fully as possible

» Consistent performance (SLA)
* e.g. "99.99% within N ms”

This talk: Performance!

» Our service is latency sensitive

* SO obviously end-to-end performance matters
 but it's not all that matters

 Utilise resources as fully as possible

» Consistent performance (SLA)
e e.g. 99.99% within N ms’

* [hroughput vs. latency

Not a single highly-tuned application

» One platform, many applications
* under constant development by many teams

» Complexity and rate of change mean challenges for
maintaining high performance.

» Lots of techniques
* both “social” and technical

Tackle performance at the...

e User level

* helping our users care about performance
* Source level

» abstractions that encourage performance
 Runtime level

* low-level optimisations and tuning
e Service level

* making good use of resources

Performance at the
user level

User code

Haskell

Sigma Engine

C++ / Haskell (

Connecting users with perf

» Users care firstly about functionality
* SO0 we made a DSL that emphasizes concise
expression of functionality, abstracts away from
performance (more later)
* but we can't insulate clients from performance issues
completely...

Photo: Scott Schiller, CC by 2.0

ek

Photo: Greg Lobinski, CC BY 2.0

numCommonFriends, two ways

numCommonFriends a b = do
at <- friendsOf a
aff <- mapM friendsOf af
return (count (b "elem) aff)

numCommonFriends a b = do
at <- friendsOf a
bf <- friendsOf b
return (length (intersect af bf))

When regressions happen

* Problem: code changes that
regress performance

» Platform team must diagnose + fix ¢
- This is bad: S
 time consuming, platform team is a aleney ————
bottleneck

* €rror prone
* some regressions still slip through

Time

2pm yesterday

Goal: make users care about perf

» But without getting in the way, If possible
» Make pert visible when it matters

e avold regressions getting into production
* Make perf hurt when it really matters

Offline profiling is too hard

» Accuracy requires
» compiling the code (not using GHCI)
* running against representative production data
e comparing against a baseline

» don't want to make users go through this themselves

o
T

Our solution:
Experiments

Photo:usehung, CC BY 2.0

Experiments: self-service profiling

* At the code review stage, run automated
benchmarks against production data, show the
differences

» Direct impact of the code change is visible in the
code review tool

* Result: many fewer perf regressions get into
production

More client-facing profiling

» Can't run full Haskell profiling in production
» 2X perf overhead, at least
* Poor-man’s profiling:
 getAllocationCounter counts per-thread allocations
* iInstrument the Haxl monad
« manual annotations (withLabel “foo” $...)
* some automatic annotations (top level things)

Make perf hurt when it really matters

* Beware elephants

* (unexpectedly large requests that degrade
performance for the whole system)

How do elephants happen?

* Accidentally fetching too much data

» Accidentally computing something really big
* (or an infinite loop)

» Corner cases that didn't show up in testing
» Adversary-controlled input (avoid where possible)

Kick the elephants off the server

o Allocation Limits

* Limit on the total allocation of a request
» Counts memory allocation, not deallocation
* Allocation is a proxy for work

» Catches heavyweight requests (“elephants”)
* And (some) infinite loops

A not-so-gentle nudge

* As well as being an important back-stop to keep the
server healthy...

 [his also encourages users to optimise their code
» ...and debug those elephants
* which in turn, encourages the platform team to provide
better profiling tools

Performance at the
source level

Concurrency matters

» “fetch data and compute with it”

* Arequest is a graph of data fetches and
dependencies

* Most systems assume the worst
* there might be side effects! ‘ A
* SO execute sequentially unless you

explicitly ask for concurrency.

Concurrency matters

» But explicit concurrency is hard
* Need to spot where we can use it
 Clutters the code with operational
details
» Refactoring becomes harder, and is
likely to get the concurrency wrong

Concurrency matters

* What if we flip the assumption?
e Assume that there are no side effects
» Fetching data is just a function
* Now we are free to exploit concurrency
as far as data dependencies allow. ‘ A
» Enforce "no side-effects” with the type
system and module system.

numCommonFriends a b = do
fa <- friendsOf a

b <- friendsOf b
return (length (intersect fa fb))

friendsOf a friendsOf b

length (intersect ...)

FP with remote data access

* Treat data-fetching as a function

friendsOf :: Id -> Haxl [Id]

* Implemented as a (cached) data-fetch

* Might be performed concurrently or batched with
other data fetches

* From the user’s point of view, “friendsOf x" always
has the same value for a given x.

Why friendsOf :: Id -> Haxl [Id] ?

» Data-fetches can fall

» Haxl Includes exceptions

» Exceptions must not prevent concurrency (not EitherT)
* Haxl monad Is where we implement concurrency

» otherwise It would have to be in the compiller

How does concurrency in Haxl work™?

* By exploiting Applicative:

(>>=) :: Monad m => m a — (a > mb) > mb
dependency
(<*>) :: Applicative f => f (a — b) — f a — f b

N

iIndependent

Applicative concurrency

* Applicative instance for Haxl allows data-fetches in
both arguments to be performed concurrently

* Things defined using Applicative are automatically
concurrent, e.g. mapM:

friendsOfFriends :: Id -> Haxl [Id]

friendsOfFriends x = concat <$> mapM friendsOf x

» (details in Marlow et. al. ICFP'14)

. facebook / Haxl ® Unwatch v | 211 W Star = 2,843 ¥ Fork 241

<> Code (D) Issues 1 ') Pull requests 3 I!l| Projects 0 = Wiki Insights v

A Haskell library that simplifies access to remote data, such as databases or web-based services.

‘D 153 commits ¥ 1 branch © 2 releases 22 19 contributors 5fs BSD-3-Clause

Branch: master v New pull request Create new file @ Upload files = Find file

Richard-zhang committed with facebook-github-bot fix typos in Haxl/Core/Monad.hs - Latest commit d2ee@dd on 26 Jul
e Haxl fix typos in Haxl/Core/Monad.hs a month ago
Bl example Rename Show1 to ShowP 9 months ago
Bl tests fix typos in tests/BatchTests.hs a month ago
Z) .gitignore Make haxl compile cleanly with stack build --pedantic 11 months ago
Z) .travis.yml Test with GHC 8.2.1 a month ago

=) LICENSE Update haxl copyright headers 3 years ago

Clones!

» Stitch (Scala; @ Twitter; not open source)

» clump (Scala; open source clone of Stitch)

» Fetch (Scala; open source)

» Fetch (PureScript; open source)

* muse (Clojure; open source)

 urania (Clojure; open source; based on muse)
» HaxISharp (C#; open source)

» frax|l (Haskell; using Free Applicatives)

Haxl solves half of the problem
* What about this?

numCommonFriends a b = do
fa <- friendsOf a

fb <- friendsOf b
return (length (intersect fa fb))

 Should we force the user to write

numCommonFriends a b =
(length . intersect)

<$> friendsOf a
<*> friendsOf b

* Maybe small examples are OK, but this gets really

hard to do In more complex cases

A do ((x1,x2),x4) <- (,)

b x1 <$> (do x1 <- a

C X2 <- b x1
d x3 return (x1,x2))
o

X1 x4 <*> (do x3 <- c; d x3)
return (x2,x4,x5) X5 <- e x1 x4

return (x2,x4,Xx5)

* And after all, our goal was to derive the concurrency
automatically from data dependencies

{-# LANGUAGE ApplicativeDo #-}

* Have the compiler analyse the do statements
* [ranslate into Applicative wherever data
dependencies allow It

numCommonFriends a b = do

f3 <- friendsOf a2 humCommonFriliends a b =

(length . intersect)
<$> friendsOf a
<*> friendsOf b

fb <- friendsOf b
return (length (intersect fa fb))

One design decision

How should we translate this?

do x1 <- a
X2 <- b :
x3 <- ¢ x1 A c
x4 <- d x2 _:>;<i~‘////
return (x3,x4) ;
X — -
((,) <$> A <*> B) >>= \(Xl,XZ) > (A‘ B) , (C ‘ D)

(,) <$> C[x1] <*> D[x2]

,) <$> (A >>= \x1 -> C[x1]) | |
SR NI oo £ (A; C)| (B D)

Which iIs best?

((,) <$> A <*> B) >»>= \(x1,x2) ->

(,) <$> C[x1] <*> D[x2] (A|B); (C | D)

(,) <$> (A >>= \x1 -> C[x1])

<*> (B >>= \x2 -> D[x2]) (A;C)1(B:D)

More
concurrency

What laws do we assume?

((,) <$> A <*> B) >»>= \(x1,x2) ->

(,) <$> C[x1] <*> D[x2]

valid for any
law-abiding
Monad
(,) <$> (A >>= \x1 -> C[x1])
<¥> (B >>= \x2 -> D[x2]) only valid for
commutative

Monads

* \We chose to assume law-abiding Monads only
* [his sometimes restricts the available concurrency
* If the user writes this instead, they get a better

result: NG

X3 <- ¢ X1

X2 <- b
x4 <- d X2
return (x3,x4)

* ApplicativeDo Is ultimately a heuristic compiler
optimisation, there are many ways to defeat It.

Should concurrency be the compiler’s job?

* When there are no (or few) side effects, implicit

concurrency is a better default
* More concise code

* | ess brittle

» Easier to refactor

» Can still use explicit concurrency
* (via Applicative, mapM etc.)

Should concurrency be the compiler’s job?

» Against:
 IT'S INVISIBLE MAGIC
» Can miss opportunities
» Easy to go wrong when there are side-effects

What about side effects?

* In Sigma we cleanly separate effects
* Rules return actions to perform

* Even if you have a few side effects, explicit ordering is
possible, turn off ApplicativeDo or use >>=

myFunction =

writeSomeData >>= \ ->
readSomeData ...

Caching & memoization

All data fetches are cached

» Cache lives for the request only

* SO “friendsOf x" always returns the same result in a
gliven request

* This Is liberating!
* never need to pass around fetched data

» Just fetch it wherever you need it
» caching reduces coupling, increases modularity

» Cache enables record + replay for testing

Taking caching further

memo :: Key -> Haxl a -> Haxl a

* memoize an arbitrary "Haxl a” computation
* (again, within a request)
* Even more liberating!
» profile to find duplicate work, add memo
* N0 Need to pass results around
» great for modularity

Performance at the
runtime level

Scheduling

* GHC uses an N/M threading model:
* N capabllities (think: OS thread)
* M Haskell threads (lightweight, or bound to OS thread)
* runtime scheduler attempts to load-balance M onto N

 Maximum real parallelism = N

Competing concerns

* N should be large enough to max out the CPU
* including Hyperthreaded cores (~30% of CPU)

* If GHC doesn't schedule our M workers perfectly
onto the N capabillities, we waste some CPU

» Easiest way to fix this is to make N larger
* (give the scheduling problem to the OS)

e But...

Garbage Collection

* GHC uses parallel stop-the-world GC
* Running on the same N threads

* Problem: parallel GC degrades badly if N > #cores
* due to work-stealing

» So increasing N to counteract scheduling
imperfection causes GC to slow down

Solution: let GC use <N threads

* We added a new option, +RTS -gnn
e Limits the number of GC threads to n

* Picks dynamically at runtime which threads to use
* use busy threads for GC, leave idle threads asleep

* €.9. on a 16-core box we could use
+RTS -N48 -gnle6
and easily max out the CPU
provided we have enough worker threads

-gn is the default

* This worked so well, that | enabled -gn by default to
counteract the slowdown when N > #cores
 Benchmarks: -N8 -gn4 on 4-core laptop:

__ [ettt
Program alze Allocs Runtime | Elapsed |TotallMem
blackscholes +d, BE +d, BE -712.9% -72., 8% +9, 5%
coins +d, BE -4, BE -73. 7% 72, 2% -4, 8%
mandel +d, BE +d, BE -7/b. 4% -70. 4% +3, 3%
matmul t +d, BE +15., 9% -2b, 8% -33. 4% +1, 8%
nbody +d, BL +2. 4% +4, 7% b, 876 7 % A
parfib +d, BE -8. 9% -33. 24 -31. 5% +2, 0%
partree +d, BE -4, BE -b8 ., 4% -ob, 8% +2., 7%
prsa +d, BE -4, BE -b65. 4% -b8 ., 4% h, 8L
queens +d, BE +d, 2% -00, g% -00, 8% -1.5%
ray +d, BE =i ., 9% -00., /& -do. 6% -3, 6%
sumeuler +d, BE -4, BE -47, 8% -46.92j/ b, Bz

_

Aside: multiple processes?

* Could we run N processes instead?
* Avoids GC sync issues

* But sharing Is much harder
* The server process has shared caches and process-level
state which would be harder to manage
* Monitoring, debugging etc. are easier with one process

Multiple heaps?

» aka the Erlang model
* Again, managing shared caches becomes harder
* But having local independently-collected heaps In

some form is the way forwards
» .. O'Caml’s multicore runtime

Let’s talk about... GC

» GHC has a parallel, generational, stop-the-world

copying collector
* Allocate like crazy, then stop and copy everything live

* We have to worry about:
 overall throughput
* pause time
* synchronising threads to stop-the-world

Improving throughput

» GC Is a space/time tradeoft
* We improve throughput by using more memory
* More memory = fewer GCs
* But how is the memory divided up?
» By default, GHC divides nursery size evenly by N
capabilities
* This was fine for small nurseries (L2 cache sized)
» But we want a multi-GB nursery

Nurseries

——

Free

Problem: capabilities allocate at different rates, so we
GC before we have filled all the memory

Solution: nursery chunks

* Divide the nursery into fixed-size chunks
* e.g.4MB

Free

Full Chunks

Empty Chunks

Nursery chunks

* GC when all the chunks are full
* Very little wastage
» Significantly reduced GC overhead

* We can optimise memory access further...

Processor Cores

i $ $ 383383

$

Main Memory

Processor #1 Cores

§i § 1 3

Main Memory

AN

Processor #2 Cores

§1 § 8 1

Main Memory

Bus

Non-Uniform Memory Access (NUMA)

* Machine divided into nodes

» Accessing memory on the local node is faster (e.qg.
2X)

* In the absence of any hints, the OS allocates
memory randomly, so we’'ll get ~50% remote access

Observation

* Most memory access is to the nursery
» Since our nursery is much larger than the cache
* Most memory access is to recently allocated objects

* Opportunity:
* Ensure that nursery memory accesses are local

Node O

Node 1

Free

Capabilities

Full Chunks

Empty Chunks

Does it help?

* Higher percentage of local memory access

e Could be better
 Where are the rest of the remote accesses?

e Tradeoff

» when the pool is empty, do we steal from the other
node, or run the GC?

Reducing pause times

» Some fraction of the heap data is mostly static

* In Sigma, it's static configuration data
* needs to be cached, for fast access
* but rarely changes

* No point in having the GC copy this data on every
(major) collection

Added in GHC 8.2: compact regions!

compact :: a -> IO (Compact a)

getCompact :: Compact a -> a

* The compact value Is treated as a single
object by the GC, so O(1)
» compact is O(n), similar overhead to GC

returns a reference
to the compacted
value

<

»

takes an arbitrary
value and copies it
INto a consecutive

region of memory

\J 4
)

4

Compact unlocks new use cases

 Now we can have an arbitrary amount of Haskell data in the
heap, with zero GC overhead

e SOome caveats:

» Data can't contain functions, mutable things, ByteString
* Pay O(n) to update the data

* Why no functions?
* Functions might refer to CAFs

* Why no ByteString?
* Pinned memory (

Optimising FFI calls

A source of pain: callbacks from C/C++

* How can you implement an efficient Haskell wrapper
for a C++ API like this

void sendRequest(
Request &req,

std: :function<void(Response&)> callback

) ;

The usual way

type HaskellCallback = Ptr Response -> IO ()

foreign import ccall “wrapper”

mkCallback :: HaskellCallback
-> IO (FunPtr HaskellCallback)

sendRequest :: Request -> IO (MVar Response)

sendRequest req = do
mvar <- newkEmptyMVar
callback <- mkCallback $ \responsePtr -> do
r <- unmarshal responsePtr
putMVar r
-- send the request, passing the callback

But this Is slow...

» mkCallback has to generate some code
» and we have to free it later

* When C++ calls the callback
» Creates a new Haskell thread and runs it
* Will block if the GC is currently running
» Calls into Haskell are heavyweight

Faster async callbacks

* GHC exposes a new C API.

void hs try putmvar (

1nt capability,w

HsStablePtr sp
)

StablePtr (MVar ())
» Behaves just like

tryPutMvVar :: MVar () -> I0 ()
e But called from C/C++

How to use It

receive :: MVar () -> Ptr Response -> IO Response

receilve m p = do
takeMVar m

peek p

* We need a callback wrapper on the C side to call
hs try putmvar()

* Memory to store the result can be Haskell-allocated
and GC’'d, no need to free

Furthermore...

* hs try putmvar() is non-blocking

* If it can do the putMvar immediately, it does

* If GC is in progress, or the capabillity is running, it
sends a message

» Callbacks blocking or failing is a source of problems:
hs try putmvar() avoids all that

* \We saw some nice speed and scalability
improvements from this

Performance at the
service level

Performance tradeoffs

* For best throughput:
* Handle as many concurrent requests as we can fit in
the memory
» Defer GC as long as possible
» But these will negatively affect latency:
* the longer GC Is deferred, the longer it takes
* GC Is mostly O(live memory), but partially O(memory)
and O(time since last GC)

How to exploit this?

 Two Instances of the service:

Latency Throughput
optimised optimised
Queue

N

Clients

Clients

How to exploit this?

 Two Instances of the service:

e Migrate clients to the
Latency Throughput . .
optimised optimised throughput-optimised
service when possible
Queue
NS

Clients

Clients

Messages

* Abstract away from concurrency (Haxl + ApplicativeDo)

» Help users care about perf, and give them the tools to
understand it

» EXplolt latency-insensitivity In clients

* Runtime tricks:

» GC scheduling, nursery chunks, NUMA, hs try putmvar,
Compact

We are hiring!

* Drop me an email: marlowsd@gmail.com

