
Visual Haskell
A full-featured Haskell development environment

Krasimir Angelov

kr.angelov@gmail.com

Simon Marlow
Microsoft Research Ltd, Cambridge, U.K

simonmar@microsoft.com

Abstract

We describe the design and implementation of a full-featured
Haskell development environment, based on Microsoft’s extensible
Visual Studio environment.

Visual Haskell provides a number of features not found in exist-
ing Haskell development environments: interactive error-checking,
displaying of inferred types in the editor, and other features based
on static properties of the source code. Visual Haskell also provides
full support for developing and building multi-module Haskell
projects, based on the Cabal architecture. Visual Haskell supports
the full GHC language, and can be used to develop real Haskell
applications (including the code of the plugin itself).

Visual Haskell has driven developments in other Haskell-related
projects: Cabal, the Concurrent FFI extension, and an API to allow
programmatic access to GHC itself. Furthermore, development of
the Visual Haskell plugin required industrial-strength foreign lan-
guage interoperability; we describe all our experiences in detail.

Categories and Subject DescriptorsD.2.6 [Programming Envi-
ronments]: Integrated Environments

General Terms Languages, Design

Keywords Visual Studio, Haskell Development Environment

1. Introduction

Haskell suffers from the lack of a decent development environment.
For programmers used to the elaborate environments available for
more mainstream languages (eg. Microsoft Visual Studio, Borland
C++ Builder/JBuilder, KDevelop, Eclipse, JCreator), Haskell’s pal-
try offerings seem positively primitive.

There is a Haskell mode for Emacs [16], which is a fine text editor,
but it falls short of providing any real help to the Haskell program-
mer beyond simple syntactic colouring and an attempt at automatic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’05 September 30, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-071-X/05/0009. . . $5.00.

indentation. Even the colouring support fails to correctly colour
source code in several cases, based as it is on regular expressions
rather than a real lexical analyser. Support for multi-module pro-
grams and libraries is limited, relying largely on external tools with
no integration in the environment. The support for automatic in-
dentation is based on heuristics rather than a real knowledge of the
syntactic structure of the code, so inevitably it often fails to work.

Emacs can provide a menu of the functions defined in a source
code module, but it does this by looking for type signatures using
regular expression matching, so it gets confused in certain cases:
comments in the wrong place, signatures split over multiple lines,
and pre-processors can all cause it to give wrong results.

There are other programming environments for Haskell available
[9, 4, 3, 19, 20, 2], and some of these improve on the Emacs
support in various ways, but they all stop short of providing an
environment with real knowledge of the structure of the code being
developed. hIDE looked the most promising, but it hasn’t seen
any updates for 3 years. There are also source-code browsers for
Haskell [17, 5, 10, 6, 14], but these require a separate processing
step to obtain the results. The programmer would be better served
by having the information available immediately and interactively
while developing the code.

This paper makes the following contributions. Our contributions
are primarily of the tools and engineering experience variety rather
than research results:

• We describe the first full-featured development environment for
Haskell, implemented as a plugin for Microsoft’s multilingual
Visual Studio environment (Sections 3.1–4). The key points are:

In contrast to existing Haskell environments, the editor com-
municates directly with the compiler, and has full knowl-
edge of the structure of the program, not only on a syntactic
level but also including full typing information. This enables
the environment to provide advanced editing features; for
example, real-time error checking and interactive display
of types. We have still only scratched the surface of what
is possible: Section 6 gives some ideas for future enhance-
ments. Nevertheless, in some ways, our system is more ad-
vanced than the Visual Studio environments for C++ and
other languages.

Our environment has an advanced project and build system,
which draws on the facilities provided by Cabal [11]. It
fully supports multi-module libraries and applications, and
doesn’t require the programmer to write a single Makefile
(Section 4). Projects developed in Visual Studio can be
compiled and installed on platforms without Visual Studio

installed1, because a Visual Studioproject is also a Cabal
package, and Cabal packages can be built and installed on
any system that has a Haskell compiler.

The environment works with the full set of language and
compiler features supported by GHC [1]. The benefits of
this should not be underestimated: tools for the Haskell lan-
guage often support only plain Haskell 98 or are restricted to
a few of the extensions that GHC supports; and this means
that programmers who need to use some of the more ad-
vanced features are quickly locked out of using the tools.
Our use of GHC itself as a source-code analysis engine
means that any program that works with GHC can be de-
veloped in Visual Haskell.

In fact, the Visual Studio plugin is self-hosting: it can be de-
veloped and built inside Visual Studio itself. As you might
imagine, the Visual Studio plugin uses various exotic fea-
tures of GHC, and does some heavyweight foreign language
interop, so this is no mean feat.

• We chose to implement our Visual Studio plugin in Haskell
itself, and doing so has not been without difficulty. However,
the process has been beneficial to Haskell in a wider sense.
Extensions to Haskell, GHC, and Cabal have all been driven
by the Visual Studio plugin:

The Visual Studio plugin is required to be multithreaded,
which turned out to be a serious testbed for GHC’s imple-
mentation of the new FFI/Concurrency extensions [15], oth-
erwise known as the “threaded RTS”; Visual Studio helped
us refine the design and implementation of the threaded
RTS.

The requirements of Visual Studio were a key factor in the
design of Cabal [11].

The Visual Studio environment communicates with its plug-
ins via COM [18]. Our existing Haskell/COM interop tools
[7, 8] were stretched to their limits and beyond, but we now
have valuable experience that can be brought to bear on
designing enhancements or new variants of the tools (Sec-
tion 5).

The Visual Studio plugin needs to talk directly to the com-
piler, and this forced us (the GHC developers) to think about
what a programmatic interface to GHC should look like
(Section 3.2). We have now implemented the API, and it
is used not just by Visual Studio but also by GHC’s exist-
ing front-ends (GHCi and the command line interface), and
other projects which require a Haskell front-end are starting
to look into it too [12, 17].

Basing our environment on Visual Studio means that it is limited
to the Windows platform, which is unfortunate. However, much
of the work we have done is not platform-specific (the GHC API
and Cabal in particular), so we hope these technologies can be
leveraged to develop environments for other platforms.

2. A Tour of Visual Haskell

Visual Studio is a multilingual environment with integration for
C++, C#, J#, Visual Basic and many other third party languages.

1 Provided the code itself is portable to the desired platform, of course.

Figure 2. Errors in the editor

Figure 3. Tasks

The features that it provides go far beyond simple syntax colouring.
There is support for projects, compilation, source browsing, source
level quick info, word completion, automatic brace matching and
many other language specific features. Our aim is to provide all
these features for the Haskell programmer.

In this section, we illustrate the features of the Visual Haskell en-
vironment with screenshots, before going on to explain the imple-
mentation details in the following sections.

2.1 The Editor

Loading up a Haskell module into Visual Haskell presents the user
with a screen similar to Figure 1. The first thing to notice is that
elements of the source code are coloured according to their syntac-
tic category (keyword, string, identifier etc.)2. Colouring happens
as you type, and changes on the current line automatically propa-
gate to the rest of the file as necessary (for example, opening a new
multi-line comment).

The environment is also constantly checking the current source
file for errors. Not just syntactic errors, but all violations of the
Haskell static semantics — scoping errors, type errors, and so on
— are checked for. If an error is found, the position of the error
is indicated by underlining the erroneous code (Figure 2), and a
task item is entered into thetask list (Figure 3). When the user
starts typing again, the underlining and the task are automatically
removed. This checking happens in a background thread, so it
doesn’t disturb the interactive feel of the environment. Responsive
interactive checking of the source code saves a great deal of time
for the programmer, as the compile/edit cycle takes place within
a single source code window, with no need to switch windows and
issue commands. Furthermore, since we’re using GHC itself for the
interactive checking, and the checking takes place using exactly
the same contextual information as will be available at compile
time, we can guarantee that a file that checks in the editor will also
compile for real.

Now, because the source code has been typechecked, we can pro-
vide the programmer with a great deal of information about the
code. For example, the drop-down bar at the top of the window
lists the entities defined in the module, and their types where ap-
propriate (Figure 4).

2 If you’re reading this in monochrome, you’ll have to take our word for it.

Figure 1. Visual Studio environment

Figure 4. Editor and Drop-down bar

Figure 5. Quick info

Hovering the mouse over an identifier causes the type of the identi-
fier to pop up in a tip window (Figure 5). Pressing the key sequence
for completion brings up a list of names in scope that can complete
the identifier under the cursor (Figure 6). On the right-click context
menu is an option to “go to definition”: this jumps the cursor to the
definition site for the identifier under the cursor, and it works both
for top-level and locally-defined names, in the current module or
another module in the project.

All of these features are supported by interactive checking of the
source code, so the information on which they are based is updated
constantly and never out of date.

Figure 6. Word completion

2.2 Projects

We have so far described the features available to the Haskell
programmer when editing a single source file, but Visual Haskell
also fully supports the construction of multi-module programs and
libraries.

Figure 7 shows the “Solution Explorer” window in Visual Studio,
displaying a Haskell project (HaXml in this case). A project should
be thought of as a container for two kinds of information:

• Source files,

• Metadata, such as the options required to compile the sources
and the dependencies on external packages.

Figure 7. Solution Explorer

The solution explorer’s hierarchy reflects the filesystem: the folders
are directories, and the leaves are files in the project. Some of the
files are Haskell source files, and others are auxilliary, such as the
LICENSE file. Files can be added and removed from the project,
using the right-click context menu.

The Referencesnode in the hierarchy is special: it doesn’t corre-
spond to a real directory, and it contains an entry for every depen-
dency of the current project on an external package. Dependencies
have to be added manually; a possible future extension is to derive
them automatically in some way.

A new source file is created using the “add new item” option, which
yields the dialog in Figure 8. Various types of file can be selected,
and the environment will then create a template source file – for
example a Haskell module will have amodule declaration based
on the file name.

The meta-data associated with a project is edited via the project
properties page, shown in Figure 9. The fields in the project proper-
ties are mostly descriptive meta-data, and have no semantic value.
The only exception is the version number – version numbers of
packages are used to resolve dependencies.

2.2.1 The Class View

The “Class View”3 (Figure 10) provides an overview of the struc-
ture of the code in a project. The top-level branches in the tree are
modules, and underneath each module is a node for each of the
top-level entities defined in that module (functions, classes, types,
instances etc.). Clicking on a node navigates the editor to the defi-
nition site for the entity.

The class view is quite basic at the moment, but in the future there
are various ways in which it could be extended. For example, we

3 ”Modules View” might be better name for this feature but we are just
reusing the existing service which is used for C++, C# and other object
oriented languages.

Figure 8. Add Item dialog

Figure 9. Project Property Page

could include a rendition of the class hierarchy, and attach the
instances of a class to the class itself.

2.2.2 Building and testing the project

Compiling the project to an executable or library is fully supported
within the environment. Selecting the build option from the menu
will cause all the modules in the project to be compiled in depen-
dency order. Any compile errors are entered as tasks in the task
list, where clicking on the task will navigate to the correct source
file and line containing the error. The raw textual output from the
compiler is also available. If the project is a program, then it can be
executed from within the environment too.

Figure 10. Class View

2.2.3 Projects and Cabal

Cabal, the “Common Architecture for Building Applications and
Libraries”, is a Haskell library providing facilities for configuring,
building, and distributing Haskell software. Using Cabal, the author
of a Haskell library or application gains access to a build system
which works on any platform with a supported Haskell compiler,
and also facilities for packaging and distributing their code in
source or binary format. The unit of distribution is called a Cabal
package, and may consist of a single library or application4.

The connection between Cabal and Visual Haskell projects is an
intimate one: a Visual Studio projectis a Cabal package. The Visual
Haskell project support is essentially a GUI for Cabal. In fact, the
design of Cabal was heavily influenced by the requirements of
Visual Haskell, to facilitate this isomorphism, as we will explain
later.

When a project is created in Visual Haskell, a Cabal package is
created. The file describing the Visual Haskell project is the same
as the file describing a Cabal package, namely the.cabal file (see
Figure 11 for an example.cabal file). Visual Haskell makes it
easier to maintain and modify this file, by automatically filling in
certain fields like the list of modules. However, since the syntax of
this file is open and documented, the user may also edit it directly.

Since a Visual Studio project is also a Cabal package, the package
can be built and installed on a system that does not have Visual
Haskell. Building and installing the Cabal package only requires a
Haskell compiler and the Cabal library, which is now distributed
with all the compilers. This flexibility is an improvement over the
other supported languages, which use their own built-in build sys-
tems, or require the programmer to work directly with Makefiles.

This correspondence also works in the other direction: existing Ca-
bal packages developed on other systems can be loaded directly

4 Currently multiple executables are supported, although the support is
patchy and is expected to be replaced by a more general way to combine
multiple packages later.

Figure 11. An example.cabal file
name: HaXml
version: 1.13
license: LGPL
license-file: LICENCE-LGPL
author: Malcolm Wallace <Malcolm.Wallace@cs.york.ac.uk>
homepage: http://www.cs.york.ac.uk/fp/HaXml/
category: Text
synopsis: Utilities for manipulating XML documents
description:

Haskell utilities for parsing, filtering, transforming and
generating XML documents.

exposed-modules:
Text.ParserCombinators.HuttonMeijerWallace,
Text.XML.HaXml,
Text.XML.HaXml.Combinators,
Text.XML.HaXml.DtdToHaskell.Convert,
Text.XML.HaXml.DtdToHaskell.Instance,
Text.XML.HaXml.DtdToHaskell.TypeDef,
Text.XML.HaXml.Escape,
Text.XML.HaXml.Haskell2Xml,
Text.XML.HaXml.Html.Generate,
Text.XML.HaXml.Html.Parse,
Text.XML.HaXml.Html.Pretty,
Text.XML.HaXml.Lex,
Text.XML.HaXml.OneOfN,
Text.XML.HaXml.Parse,
Text.XML.HaXml.Pretty,
Text.XML.HaXml.Types,
Text.XML.HaXml.Validate,
Text.XML.HaXml.Verbatim,
Text.XML.HaXml.Wrappers,
Text.XML.HaXml.Xml2Haskell,
Text.XML.HaXml.Xtract.Combinators,
Text.XML.HaXml.Xtract.Lex,
Text.XML.HaXml.Xtract.Parse

hs-source-dir: src
build-depends: base, haskell98
extensions: CPP

into Visual Studio as a project. This is a significant win, because
it means that a large (and growing fast) body of Haskell software
can be developed directly in Visual Haskell without the need to cre-
ate separate project files or ensure that the correct build options are
propagated into the project’s settings – all this happens automati-
cally.

However, we should admit that there is not a true isomorphism
between Cabal packages and Visual Studio projects. Cabal is de-
signed to be flexible in the sense that it can accomodate virtually
any existing package, including packages which have their own
configuration and build systems. Since there is no general way for
Visual Haskell to extract information such as the compiler options
from a bespoke build system, Visual Haskell cannot completely
support such packages. A possible future extension is to have a
degenerate mode of Visual Haskell in which basic editing features
are provided in the absence of complete package metadata.

2.3 Summary

To summarise, Visual Haskell provides the following Haskell-
specific features:

• Syntax colouring.

• Drop down list with all declarations in the current module.

• Pop-up tips displaying the type of the identifier under the
mouse.

• Word completion for any identifier in scope.

Visual Studio IDE

?6

C++ plugin

?6 ?6
HDirect Babel

Haskell plugin

6
? ?

GHC API Cabal

?6
P/Invoke

C# plugin

?6

Figure 12. Overall Structure

• On the fly error checking.

• Jump to the definition of an identifier.

• Support for projects based on Cabal.

• Compilation and execution from the environment.

• Source code browser.

• Integrated documentation for GHC, all standard libraries, and
other Haskell tools.

3. Implementation Walkthrough

In this section we describe the interesting aspects of the implemen-
tation of Visual Haskell, beginning with an overview of the struc-
ture, and then describing the implementation of specific features.

3.1 Overall structure

Visual Studio is a highly extensive environment. It is based around
a small core, with all environment features implemented as plug-
ins which can be installed independently. Each plugin may ask the
core for specific services or provide its own services which become
available to the other plugins. This simple and modular architec-
ture is implemented on top of Microsoft’s Common Object Model
(COM) [18] which makes it possible to write new plugins in any
COM-compatible language.

Figure 3.1 shows the structure of the complete system. The Visual
Studio IDE communicates with the plugins via a published (but
huge!) COM specification. Plugins may be implemented in any
language, but our plugin is implemented in a combination of C++
and Haskell, for the following reasons:

• There is an existing C++ layer called Babel, which is provided
with the Microsoft Visual Studio SDK. Babel consumes the
large and complex COM API for language integration in Visual
Studio’s editor, and exposes a rather simpler COM API. Babel’s
purpose is to make it easier to add support for a new language to
the Visual Studio editor, in this sense Babel is highly successful.
However, Babel doesn’t provide any support for Visual Studio
features outside the editor (for example Projects), and it is
lacking support for some editor features.

Nevertheless, Babel saved us a lot of time getting started with
our Visual Studio extension, and we are still using it – although
we are now using a locally-modified version with support for
some of the missing editor features and have modified Ba-
bel’s API to more closely fit our requirements from a Haskell

perspective. For implementing features not provided by Babel
(such as Projects), we interact directly with the Visual Studio
COM APIs.

• The bulk of the Haskell plugin is written in Haskell itself. We
needed to use the code of GHC and Cabal, which are both
Haskell libraries, so using Haskell for the rest of the plugin
was the natural choice. However, this decision did lead to dif-
ficulties, because it meant that we had to do some heavyweight
COM interop from within Haskell (see Section 5), for commini-
cation both with Babel and direct to the Visual Studio APIs.

Babel is about 20,000 lines of C++. Rewriting Babel in Haskell
would undoubtedly lead to a nicer end result, but would have been a
lot of work. For comparison, the Haskell plugin code, not counting
external libraries (GHC, Cabal, H/Direct) and not counting the IDL
files with the COM API specifications, is about 8,000 lines.

3.1.1 Cabal

Since the Visual Studio environment also needs a build system —
we need to be able to build and test code within the environment
— the obvious solution was to build on Cabal, and make use of the
build system it provides. We have already described the advantages
to the user of our close coordination with Cabal, but from an
implementation perspective this is a shrewd decision because it
means we offload the work of developing and maintaining the build
system to the Cabal maintainers, and we automatically benefit from
future improvements.

The requirements of Visual Haskell influenced the design of Cabal
itself in several ways. For instance, in the original Cabal design, the
package specification was to be embedded in Haskell code (in the
Setup.lhs file). However, this would have precluded editing the
package specification using an external tool (eg. Visual Haskell),
so the design was modified to store the package specification in a
separate file with a well-defined concrete syntax.

3.1.2 GHC as a library

The Visual C++ and Visual C# plugins provide a rich set of
IntelliSenseR© features (code completion, code browsing, go to def-
inition, etc.). In order to implement some of these features for
Haskell we decided to use the existing front-end (parser, static
analysis and typechecker) from GHC. This idea was so successful
that in some aspects Haskell provides much better IntelliSenseR©

features than other languages. The GHC API and its integration
with Visual Haskell is explained in the following Section.

3.2 Implementation of the editor features

The first thing that we did for Visual Haskell was to implement
syntax colouring for the Visual Studio editor. Syntax colouring
is implemented entirely via APIs provided by Babel, and did not
require either modifications to Babel or direct interaction with
Visual Studio, which enabled us to get something working quickly.
We needed a small amount of infrastructure to build the Haskell
plugin as a DLL and register it with Visual Studio and Babel, so that
Visual Studio knew to invoke our DLL to obtain language-specific
features for Haskell source code.

Colouring source code is straightforward: each time a line of source
code needs to be coloured, Babel calls into our plugin passing the
text of the line, a state value, and a callback function to invoke
for each token. This interface allows the colouring state at the

beginning of each line to be represented by a single integer; the
new state at the end of the line should be returned by the plugin
after the line has been coloured.

Code can be coloured on any basis, but traditionally the lexical
grammar of the language is used. For Haskell, we opted to use the
lexical syntax – we could also use higher-level syntactic properties
(e.g. colour types differently from code), but we are restricted by
having to store the state of the colouriser in a single integer. The
state for our Haskell colouriser is constructed by observing that the
state at the beginning of a line can be either (a) inside a string, or
(b) inside an arbitrarily-deep nesting of comments. For simplicity
and speed, we built our colouring lexer using Alex [13], using a
stripped-down Haskell lexical specification: it isn’t necessary for
the colouriser to handle layout, for example.

3.3 Editor features requiring GHC

The rest of the editor features require a more complete knowledge
of the Haskell static semantics, up to and including typechecking.

The basic interface that we need to implement in our plugin is this
call made by Babel into the plugin:

HRESULT ParseSource(
[in] void *text,
[in,unique] IParseSink* sink,
[in] enum ParseReason reason,
[out,unique,retval] IScope** scope
);

ParseSource is called by Babel from a background thread; there
is no restriction on the running time ofParseSource, because it
doesn’t interrupt the user interface thread(s).

ParseSource is intended to parse (and in our case, typecheck) the
source code delivered in thetext parameter, and report errors and
warnings via thesink callback object. Additionally,ParseSource
may construct and return anIScope object, which is used by Babel
to further interrogate the plugin about aspects of the source code.

We could have implementedParseSource by invoking a separate
GHC process to compile the code. However, this would be slow,
since the GHC process would have to re-read all the interfaces for
external modules each time it is invoked. Clearly we would not
achieve a responsive interactive feel this way. Moreover, the ad-
vanced editing features we intend to implement rely on having ac-
cess to meta-information about the source code: types of identifiers
and so on. Clearly the right approach is to hook into a compiler
front-end directly.

Our initial implementation called direct into GHC to implement
ParseSource. However, we quickly realised that a more princi-
pled interface to GHC was required, especially when we needed to
extend the single-module view of the editor to a Project consisting
of multiple modules. The following section describes the API we
have designed for GHC.

3.3.1 The GHC API

The basic elements of the GHC API are given in Figure 13. The
GHC API is a general programmatic interface to a Haskell com-
pilation and execution engine. It supports typechecking and com-
pilation of multi-module programs and libraries, and execution of
code for use in an interactive environment such as GHCi. The GHC
API is intended to support various user interfaces and tools. GHC’s

Figure 13. The GHC API (abridged)

data Session -- abstract

data GhcMode
= BatchCompile
| Interactive
| JustTypecheck
| ...

newSession :: GhcMode -> IO Session

data Target
= Target TargetId

(Maybe (StringBuffer,ClockTime))

data TargetId
= TargetModule Module
| TargetFile FilePath

setTargets :: Session -> [Target] -> IO ()

data LoadHowMuch
= LoadAllTargets
| LoadUpTo Module
| LoadDependenciesOf Module

load :: Session
-> LoadHowMuch
-> (Messages -> IO ())
-> IO SuccessFlag

checkModule :: Session
-> Module
-> (Messages -> IO ())
-> IO (Maybe CheckedModule)

getModuleInfo :: Session
-> Module
-> IO (Maybe ModuleInfo)

modInfoTyThings :: ModuleInfo -> [TyThing]
modInfoExports :: ModuleInfo -> [Name]
...

own two user interfaces are built over it: the command-line inter-
face and GHCi. The API was also designed with other applications
in mind, however: it has facilities designed to be used directly by a
development environment supporting interactive checking of code,
such as Visual Haskell, and it also provides access to the compiler’s
own type-decorated abstract syntax, to support tools that examine,
analyse and manipulate Haskell programs.

An interaction with GHC is based around aSession. TheSession
is a mutable object containing the current state of the interaction
with GHC: the modules that have been loaded, which flags are
set, the contents of various caches, and so on. ASession is ob-
tained by callingnewSession, passing aGhcMode flag. The value
JustTypecheck is designed specifically for development environ-
ments where only checking of the correctness of the code is re-
quired, rather than full compilation – this helps to improve the in-
teractive response of the editor5.

Once we have aSession, usually the next task is to load some
code. This is achieved by first setting someTargets: these are the

5 For boring engineering reasons, our current implementation of
JustTypecheck does a little more work than it really needs to, in that it
runs GHC’s simplifier phase after typechecking. We plan to fix this shortly.

top-level modules that we want to compile; the rest of the module
dependency graph will be discovered automatically. For example,
a typical Haskell program will have just oneTarget: the Main
module. ATarget can be specified as a module name or a file
name, and additionally it can be associated with aStringBuffer6

– this is the actual text of the module, for use in cases where the
text of the module does not reside on disk, which is the case in
Visual Haskell when a file has not been saved since the last edit,
for example. When using aStringBuffer to represent the file’s
contents, GHC also needs to know theClockTime when the file
was last edited, so it can decide whether re-compilation or re-
checking is required.

In Visual Haskell, the set ofTargets will typically contain all
the Haskell source files in the Project. Having set ourTargets,
we can proceed to load the code. The functionload is used to
compile modules; whether the modules are compiled to object
code, compiled to bytecode or just typechecked is dependent on the
GhcMode parameter tonewSession. TheLoadHowMuch argument
to load determines which portion of the module dependency graph
is loaded; its options are self-explanatory.

Any loaded module can be inspected usinggetModuleInfo,
which returns aModuleInfo. The ModuleInfo can be interro-
gated to find all kinds of properties about the module: the entities it
defines, the names it exports, the instances it provides, and so on.

An alternative toload is checkModule. ThecheckModule inter-
face behaves almost identically toload with the LoadUpTo op-
tion, except thatcheckModule returns aCheckedModule struc-
ture if the compilation was successful. ACheckedModule con-
tains up to three versions of the compiler’s abstract syntax tree:
after parsing, after renaming7, and after typechecking. Addition-
ally, checkModule returns aModuleInfo structure for the checked
module.

The main reason for separatingcheckModule from load is that
keeping around the abstract syntax trees from the various front-end
phases constitutes a space leak, so we don’t want to do this during
the normal course of aload.

Bothload andcheckModule take a function of type

Messages -> IO()

as an argument; this is a callback invoked for both error messages
and warnings discovered during the compilation or checking pro-
cess. In the event of compilation errors, the callback will be in-
voked, andload or checkModule will return a result indicating
failure.

3.3.2 Using the GHC API in the Visual Haskell editor

The basis of the rest of the editor features is that theParseSource
entry point to our plugin invokescheckModule for the current
module. Firstly, however, it updates theTarget for this module
in the currentSession (more about how we keep track of the
Session later) to contain aStringBuffer representing the cur-
rent text of the module.

Visual display of error messages.

The error-message callback that we pass tocheckModule is a func-
tion that in turn invokes methods on theIParseSink object passed

6StringBuffer is a type used internally by GHC; it represents a flat array
of bytes.
7 GHC’s term for the resolving of names to entities.

to ParseSource: this is how error messages are reported back to
Babel. Babel handles the visual underlining of the erroneous code
and the addition of the error task to the task list.

Visual Studio requires an exact sourcespanfor an error message
– the line and column number of both the start and end points
of the syntactic entity containing the error, so that the error can
be underlined in the editor. Previous versions of GHC, however,
only kept approximate source-location information in the form of
line numbers attached to selected points in the abstract syntax tree,
primarily declaration sites. We had to modify GHC such that each
element of the abstract syntax tree is explicitly annotated with the
span of the text from which it was derived. This turned out to be a
great deal of work, but ultimately worthwhile.

Pop-up type information.

The “quick info” feature, where the type of an identifier is dis-
played in a pop-up window when the mouse hovers over it, is
implemented as follows. If typechecking is successful, the call to
checkModule returns the abstract syntax tree for the module gen-
erated by the typechecker – this version of the abstract syntax has
two important properties:

• It is decorated with types. In particular, all identifiers have types
attached.

• It has been translated to include explicit type abstraction and
application, and explicit dictionary passing.

The first property is the most important from our perspective. When
the Visual Haskell user hovers the mouse over an identifier, Babel
calls a method in our plugin passing the source location of the
mouse, and we have to return the text for the pop-up window, if
any. Finding the type is a matter of finding the identifier in the typed
abstract syntax, and extracting its type. We do this by searching the
abstract syntax by location; the search is linear in the depth of the
tree, because each node is decorated with a span, so we can ignore
subtrees whose span does not contain the location we are interested
in.

In addition to displaying the type of an identifier, the quick-info
feature will also display information about type names, class
names, and module names inimport statements. However, the
typechecked abstract syntax tree contains only the function defi-
nitions from the original source code: type signatures,class dec-
larations,instance declarations, andimport statements have all
been converted into internal representations. This is the reason that
checkModule also returns the abstract syntax from earlier phases
in the compilers front-end. To summarise the different forms of the
abstract syntax:

• Parsed: abstract syntax translated exactly from the source code.
Identifiers are strings.

• Renamed: export list andimport statements removed. Identi-
fiers are resolved to entities, and contain defining locations.

• Typechecked: type signatures,class andinstance declara-
tions are removed, and the abstract syntax contains type an-
notations and dictionary passing. Identifiers are annotated with
types.

These three versions of the abstract syntax tree can’t be easily
combined, because they have different types – the abstract syntax
type is abstracted over the type of identifiers.

So our quick info feature has to additionally search the renamed
and parsed versions of the abstract syntax tree. If we find a type
or class name under the cursor, then we can find the definition of
that type or class by interrogating the GHC API, and display its
definition in the pop-up window.

Go to definition.

This feature is implemented in a similar way to quick info. How-
ever, we did have to modify Babel to add support for the “go to
definition” command. When it receives the “go to definition” com-
mand, Babel supplies our plugin with a source location, and we
have to return the filename and source location of the definition
site, if any.

Fortunately, identifiers in the abstract syntax tree (at least the re-
named and typechecked versions of the abstract syntax) contain
information about the defining location of the identifier – this ap-
plies to all identifiers, including type names and local variables. So
again, finding the information is a matter of searching the abstract
syntax tree by location, and extracting the information from the
identifier at the required location, if any.

The fact that we can “go to definition” for local variables in addition
to top-level functions and types is a feature unique to Haskell
amongst the Visual Studio languages. Additionally, our “go to
definition” properly respects the scoping rules of the language.
However, using this feature does require that the module is at least
correctly scoped – this is a restriction that we hope to lift to some
extent in the future (see Section 6).

The drop-down definition list.

The drop-down box displays the list of top-level definitions in the
current source file, and allows selecting an item to jump directly to
that definition.

To implement this feature, we extended Babel to manage the me-
chanics of the drop-down list itself. We added theGetObject-
BrowserList method on theIScope object returned byParse-
Source which is used from Babel to update the current list of top-
level definitions after each successful call toParseSource.

Word completion.

The full set of names in scope at the top-level of the module is
known after a successfulcheckModule on a source file; it is avail-
able from theModuleInfo. When a word completion is requested
by the user, Babel interrogates theIScope from the last successful
check for the list of names in scope, and the plugin returns the list
of names obtained from theModuleInfo.

We always use the top-level scope rather than attempting to take
into account locally-bound names based on the location of the cur-
sor in the source file. The reason is that at the point word comple-
tion is required, the source file is unlikely to be in a syntactically-
correct state, so discovering the correct scope will rarely be possi-
ble. In languages like C++ and C], the scope only depends on the
source codebeforethe current point in the source file, so a correct
scope can be calculated even if there are parse errors after the cur-
sor position. This isn’t the case in Haskell, where declarations are
in scope over the entire source file. However, it may still be possible
to improve on the “top-level-names-only” scheme to some extent,
but we leave this for future work.

4. Implementation of the Project and
ClassBrowser features

In Visual Haskell two different windows are used in order to ex-
press the contents of the project: all Haskell and C files and any

other documents and scripts are accessible from the “Solution Ex-
plorer” (Figure 7) while the hierarchical namespace together with
all Haskell definitions are visible in the “Class View” (Figure 10).
The hierarchy of modules doesn’t necessary match the directory
hierarchy in the filesystems. The project may have a flat module
namespace but nevertheless the user may want to separate its source
files in different directories. The environment keeps a list of direc-
tories in which to look for Haskell files and automatically builds the
hierarchy namespace which the project is expected to have. Cabal
receives the same list and is able to compile the project properly8.

There is a significant difference in the way in which these two
views are generated. The information in the Solution Explorer is
populated from Cabal’s package description file and after that it
remains static, at least until the user adds or removes any item
from the project. At the same time, the Class View content is
dynamic and is updated each time the user makes any changes
to any Haskell module. The Class View, the Solution Explorer
and the editor cooperate to achieve this functionality. After each
modification in any source file, the editor callscheckModule to
parse and typecheck the content. IfcheckModule succeeds, then
the gathered information is used to update the declarations list
and Class View. In this sense the Class View contains information
which is collected and transformed from both the Solution Explorer
and the editor.

In terms of the GHC API we described in the previous section,
a Haskell project has a singleSession, which is populated with
a Target for each of the Haskell source files in the project. To
populate the initial Class View when loading a project, a fullload
is performed on theSession. This can take a minute or two for
a large project, but for our released version of Visual Haskell we
plan to make this happen in the background (Concurrent Haskell is
tremendously convenient for such tasks).

Project support in Visual Haskell is implemented by communicat-
ing directly with the Visual Studio COM APIs, which are rather
large and complex – in Section 5 we recall some of our war stories.

4.1 Projects and Cabal

As we’ve mentioned earlier, the project support in Visual Haskell
is based heavily on the Cabal library. Cabal provides a complete
Haskell build system, which we use in Visual Haskell when the
user requests to build the project.

Meta-data about the project is kept in a.cabal file (an example
was given in Figure 11). When the project is being edited inside
Visual Haskell, the.cabal file is under the control of the Visual
Haskell environment: the contents can be manipulated through the
controls provided.

In a Cabal library, each module can be either “exposed”, which
means that it is available to a client of the library, or “hidden”,
which means that a client of the library is prevented from import-
ing the module. We expose this option to the Visual Haskell pro-
grammer via an option on the property page for each module in
the project, and the exposed/hidden status of each module is also
indicated via an icon.

A Cabal package typically has aSetup.lhs file, which is a (usu-
ally tiny) Haskell script by which the Cabal build system can be
invoked from the command line. In Visual Haskell, we make this
file visible and editable via the Solution Explorer, but we have to
be careful to ensure the editor is working with a separate GHC

8 Cabal was restricted to have only one source directory but we have ex-
tended it. This feature is available in the development version of Cabal.

Session when editing this file, because it is not part of the project
proper.

4.2 Multiple projects

Visual Studio has a concept of asolution, which is essentially a col-
lection of projects, with dependencies between the projects. Typi-
cally each project builds a single executable or library. Building a
solution consists of building each of the component projects in the
correct order.

Visual Haskell fully supports solutions; Haskell projects can co-
exist with project from other languages in a solution. When there
are multiple Haskell projects in the solution, each one is given its
own Session in the GHC API. However, there is only a single
Visual Haskell plugin running, and a single instance of the GHC
library, so all theseSessions are managed in a single heap. Ideally,
theSessions would be able to share a lot of state: the interfaces
for common libraries, for example. We have not implemented this
yet (the fact that different projects may depend on different external
libraries makes it non-trivial).

A good example of a solution is the Visual Haskell plugin itself,
which consists of three C++ projects (our modified Babel, a library
of utilities on which Babel depends, and a small library of user-
interface utilities), the Haskell plugin code itself, and a Windows
Installer project for building the installer.

5. Writing COM components in Haskell

Microsoft’s Common Object Module (COM) is a language-indep-
endent standard and set of APIs for communicating between soft-
ware components. It is widely used on the Windows platform9, and
in particular Visual Studio uses COM as its sole interaction sub-
strate for communicating with plugins.

The size of the Visual Studio APIs is daunting. The IDL code, that
is, just the specification of the interfaces that Visual Studio exposes,
runs to 30,000 lines. Fortunately for many of the editor features
we were able to build on Babel which abstracts many of these
interfaces down to a manageable core. However, for the project
support, we had to talk directly to Visual Studio.

A tool for generating interface code from the IDL specification is
essential. The Haskell tool in this space is H/Direct [7, 8], which
does exactly what we want: it reads IDL specifications and pro-
duces the low-level marshaling code that enables high-level Haskell
code to consume and offer COM interfaces in a convenient and
type-safe way. H/Direct also provides a library of code providing
basic COM functionality: COM datatypes, marshaling primitives,
and so on.

Sadly our experience with H/Direct has not been altogether pos-
itive. Many implementation bugs were discovered along the way,
and to this date our low-level COM interface code is partially gen-
erated by H/Direct and partially edited by hand, to work around
bugs and limitations in H/Direct.

5.1 Reference counters and finalizers

COM objects are explicitly reference counted. Two methods are
used to manipulate the reference count on an object:AddRef()
andRelease(), and these methods must be implemented for ev-
ery object.Release() is expected to deallocate the object if the
reference count drops to zero.

9 Although in the future it may be increasingly supplanted by .NET.

Object pointers in H/Direct are represented by theForeignPtr
type. A ForeignPtr has a finalizer – an arbitrary piece of code
which runs when the object is found to be no longer referenced by
the garbage collector. Finalizers are used by H/Direct to manage
reference counts: the idea is that every in-coming object pointer is
converted into aForeignPtr, and its reference count increased by
a call toAddRef(). When the garbage collector detects that the
object pointer is no longer used, the finalizer callsRelease().

This approach makes things a lot simpler for the Haskell program-
mer: he doesn’t have to worry about explicit reference counting (a
common source of bugs in C++ COM code). However the approach
suffers from three problems:

• Performance: this requires incrementing the reference count
(with a function call) for every incoming interface pointer,
just in case it is stored in a Haskell data structure. This is a
significant overhead for a simple function call.

• Space leaks: if the finalizer does not run promptly, the object
cannot be freed, resulting in a space leak. What’s worse is
that this artificial space leak can lead to whole libraries being
retained in memory longer than necessary, because a library is
unloaded when there are no longer any objects managed by the
library still in use.

• More importantly, this use of finalizers just doesn’t work in
a multithreaded setting. Many objects are written to be single
threaded; that is, they assume that certain method calls (includ-
ing the reference counting callsAddRef() andRelease()) are
called from a single thread. When the Haskell runtime invokes
a finalizer, it may invoke it in a different thread than the one in
which the finalizer was created; in fact, the original thread that
created the finalizer may be long gone, because it was proba-
bly a thread that briefly called into Haskell to invoke a COM
method.

The upshot is that we can’t use finalizers to callRelease(), be-
cause the finalizer might be invoked in the wrong thread. This prob-
lem actually lead to a lot of instability in our early versions of the
Visual Haskell plugin.

To fix this problem, we modified H/Direct and its libraries to repre-
sent interfaces by plainPtrs, and we modified our Haskell plugin
code to do explicit reference-count management of COM pointers.
Managing reference counts properly is tricky and error-prone, but
we found that the number of places which had to be modified was
relatively small (most calls don’t store interface pointers, and there-
fore don’t need to alter reference counts). And because Haskell is
such a great language for expressing abstractions, we were able
to reduce the overhead and the potential for mistakes by using a
few well-chosen combinators. One of the common cases that re-
quires reference count manipulation is theQueryInterface()
call, which returns an interface pointer that has to beRelease()’d.
We wrappedQueryInterface() in a combinator:

withQueryInterface
:: IID (IUnknown b)
-> IUnknown a
-> (IUnknown b -> IO c)
-> IO c

the idea being thatwithQueryInterface automatically calls
Release() when theIO action has completed, and it can do this
in an exception-safe way too: if theIO action raises an exception,

the interface will still beRelease()’d, eliminating another cause
of reference-count leakage.

This change to explicit reference counting improved the perfor-
mance of Visual Haskell.

5.2 GUIDs

A GUID is a Globally Unique IDentifier, namely a 256-bit im-
mutable value used to uniquely identify classes and interfaces in
COM. H/Direct currently represents GUIDs with aForeignPtr
in the same way as interface pointers, but this leads to problems.
GUIDs aren’t explicitly reference counted, and by convention if a
callee needs to keep a GUID passed to it, it should make a copy
of the GUID rather than retaining a pointer to it. H/Direct didn’t
follow this convention, which has been a source of errors in our
interface code.

Fortunately the solution is simple: we should represent GUIDs by
immutable objects in Haskell, and create a copy of any GUID that is
passed into Haskell via a foreign call. Copying the GUID imposes a
small overhead, but it is less that H/Direct’s current implementation
which involves a fully-fledgedForeignPtr with a finalizer. We
also need to be able to pass GUIDs to foreign calls from Haskell -
fortunately GHC has immutable array types which support this.

5.3 Client vs. Server interface code

The IDL compiler in HDirect has an option whether to generate
client side or server side code. In a real application it is a common
to have both client side and server side implementations for one in-
terface. The compiler can generate two different files but then many
declarations will be duplicated. In Visual Haskell we have manu-
ally changed these files to share all common definitions. H/Direct
should really have an option that generates both server and client
side code, but ideally we would have the facility to select whether
we wanted client or server code or both on an interface-by-interface
basis to avoid generating large amounts of unnecessary interface
code.

5.4 Object state

We often found that an object implemented in Haskell needs to gain
access to its own interface pointers from inside a method call. The
only state available to methods is the object state, which can be a
value of any type, but does not necessarily contain a pointer to the
object itself. Making the object state contain a pointer to the object
itself requires recursion when creating the object. One way to write
it is to use themdo extension:

createFoo = mdo
let state = FooState foo
foo <- createComInstance state

(relaseFoo state)
return foo

We found this pattern to be quite common in our interface code, so
it would be natural to instead provide a method for object creation
that allows creation of the state from the object pointer.

5.5 Performance

The COM component uses multithreaded RTS but this isn’t with-
out extra cost. The FFI calls are much slower than in the single

threaded RTS. The frequent calls can force garbage collections
which slows down the things even more. In particular theAddRef,
Release andQueryInterface methods from theIUnknown in-
terface are called quite frequently. TheQueryInterface method
takes GUID as argument which adds extra cost. The overall over-
head can be significant for some tasks. We have found this in our
syntax colouring component. It has to work in real time while the
user is typing any text in the editor, so the foreign calls overhead in
this case is significant. Fortunately in COM it is expected that
IUnknown, IDispatch, IClassFactory, IConnectionPoint
andIConnectionPointContainer interfaces always have a stan-
dard predefined behaviour. This is used in HDirect and it provides
predefined implementations in Haskell. The performance will be
much better if they were in C, because the standard operations will
be performed without any FFI calls.

5.6 Sub-classed interfaces

H/Direct currently can’t generate code for an interface that does
not derive directly fromIUnknown or IDispatch, as might be the
case if an interface sub-classes an existing interface. This happens
regularly in the Visual Studio COM APIs.

Our workaround involved editing the H/Direct-generated code di-
rectly to implement the derived interfaces, but this is clearly not a
long-term solution.

5.7 Further reflections on H/Direct

H/Direct is an old tool; it was designed together with the first
Haskell FFI (Foreign Function Interface) definition, but since then
the FFI has progressed significantly and is now standardised along
with a collection of standard marshaling libraries. H/Direct’s mar-
shaling libraries duplicate functionality is now found in the stan-
dard libraries, and this makes it difficult to mix existing marshaling
code using the standard FFI libraries with H/Direct.

Arguably, COM is an old technology and we should be concen-
trating on .NET. Indeed, Microsoft has started to provide .NET in-
terfaces for extending Visual Studio; however, we believe that for
our purposes going via a .NET interface would impose a significant
performance penalty, because every call would go from native code
through the .NET runtime and back into native code again.

For us to proceed with Visual Haskell and to keep our code main-
tainable, we need a reliable tool that can generate the interface code
we need, direct from the original IDL source that Microsoft pro-
vides. The only solution may be to start from scratch; H/Direct be-
ing too large to modify. We certainly don’t need to duplicate all
the functionality that H/Direct provides: it does a lot more than just
generate COM interface code. However, the experiences learned
from using H/Direct in this setting have will no doubt be useful in
designing future tools.

6. Conclusions and Future Work

Visual Haskell fulfills the design aim that we have targeted: it
provides syntax colouring, interactive error checking, quick info,
word completion, source code browser and projects. The project
is self-hosting: it can be developed and built inside Visual Studio
itself. We expect to make the first public release shortly, and we
anticipate making further improvements based on user feedback.

From an overall perspective, the implementation of this environ-
ment seems like 90% infrastructure and 10% real features. How-
ever, now that we have the basis of the plugin connecting Visual

Studio with GHC, there are plenty of fun bits still to come: we can
implement more useful programmer features based on the wealth
of information that GHC collects about the source code.

There are plenty of editing features still to be implemented. Among
the more interesting features we have in mind are:

• Displaying the inferred type of a selected subexpression.

• Refactoring: incorporating the HaRe project [12] would allow
refactorings to be performed directly in the editor.

• Automatic outlining: collapsing code to an “outline”, such as
the first line of each definition, where individual collapsed
chunks can be expanded or collapsed.

• GHCi integration: a separate GHCi window in the environment
for interactively evaluating expressions or running tests in the
context of the project.

Some other future work plans we have are:

• Most of the editor features (with the exception of word comple-
tion) require the source code to be at least syntactically correct,
and in some cases type correct, before they work. Lifting this
restriction as much as possible is something we plan to tackle
in the future.

• The documentation for GHC and the standard libraries is
already integrated with Visual Studio. Unfortunately Visual
Haskell can’t find the documentation about the current iden-
tifier in the source code automatically. The user has to open
the documentation browser and has to look up manually. Cabal
provides built in support for Haddock which we would like to
integrate with Visual Haskell.

• Visual Studio provides a concept called “configurations”, which
essentially corresponds to multiple sets of options under which
the project can be built. For example, in the “Debug” config-
uration, we might compile with optimisation off and with as-
sertions turned on, whereas in the “Release” configuration we
would compile with optimisation turned on. Visual Haskell cur-
rently supports only a single configuration, but we hope to be
able to support multiple configurations in the future, perhaps by
extending the syntax of the.cabal file.

• The Hackage project aims to provide easy installation of ex-
ternal packages; integrating this into the Visual Studio environ-
ment would improve the experience even further.

• Most of the integrated languages provide fully featured source
level debugger. Unfortunately the debugging of lazy functional
language is still an open research problem. Even that providing
at least limited support for debugging is better than nothing.
The environment already has C code debugger. It is common
practice to have projects with mixed Haskell and C code so we
can reuse the C debugger.

Acknowledgments

We would like to thank Microsoft Research Ltd. Cambridge, for
supporting an internship for Krasimir Angelov during which much
of the implementation work on Visual Haskell was done, and this
paper was written.

We would like to thank the Cabal designers and developers: Isaac
Jones, Ross Paterson, Simon Peyton Jones, and Malcolm Wallace,

for accommodating the requirements of Visual Haskell in their
design.

Many thanks to Sigbjorn Finne for providing support for H/Direct,
and to Daan Leijen for developing Babel.

References

[1] The Glasgow Haskell Compiler.http://www.haskell.org/ghc.

[2] Haste (haskell turbo edit).http://haste.dyndns.org:8080/
index.php.

[3] Kdevelop.http://www.kdevelop.org.

[4] Vim. http://www.vim.org.

[5] J. Axelsson. HaskellDoc.http://www.ida.liu.se/~jakax/
haskell.html.

[6] M. Chakravarty. IDoc - a no-frills Haskell interface documentation
system.http://www.cse.unsw.edu.au/~chak/haskell/idoc.

[7] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. H/Direct: a
binary foreign language interface for Haskell. InACM SIGPLAN
International Conference on Functional Programming (ICFP’98),
volume 34(1) ofACM SIGPLAN Notices, pages 153–162. Baltimore,
1998.

[8] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. Calling Hell
from Heaven and Heaven from Hell. InACM SIGPLAN International
Conference on Functional Programming (ICFP’99), pages 114–125,
Paris, Sept. 1999.

[9] L. Frenzel, A. Granicz, A. de Araujo Formiga, and V. Rocha. Haskell
support for Eclipse.http://eclipsefp.sourceforge.net.

[10] A. Groesslinger. Hdoc.http://www.fmi.uni-passau.de/
~groessli/hdoc.

[11] I. Jones. The Haskell Cabal, a common architecture for building
applications and libraries. Submitted to the Haskell Workshop 2005.

[12] H. Li, S. Thompson, and C. Reinke. The Haskell refactorer, HaRe,
and its API. InFifth workshop on Language Descriptions, Tools and
Applications. ACM Press, April 2005.

[13] S. Marlow. Alex: A lexical analyser generator for Haskell.
http://www.haskell.org/alex.

[14] S. Marlow. Haddock, a Haskell documentation tool. InProceedings
of the ACM SIGPLAN workshop on Haskell, Pittsburgh Pennsylvania,
USA, October 2002. ACM Press.

[15] S. Marlow, S. P. Jones, and W. Thaller. Extending the Haskell foreign
function interface with concurrency. InProceedings of the ACM
SIGPLAN workshop on Haskell, pages 57–68, Snowbird, Utah, USA,
September 2004.

[16] G. E. Moss, T. Thorn, and S. Marlow. Haskell mode for Emacs.
http://www.haskell.org/haskell-mode.

[17] M. Neubauer and P. Thiemann. Demonstration abstract: Haskell type
browser. InProceedings of the ACM SIGPLAN workshop on Haskell,
Snowbird, Utah, USA, September 2004.

[18] D. Rogerson.Inside COM. Microsoft’s Component Object Model.
Microsoft Press, 1997.

[19] J. Svensson, D. Coutts, and S. Kurtzberg. hide.http://www.dtek.
chalmers.se/~d99josve/hide.

[20] R.-J. van Haaften. Jcreator with Haskell support.http://www.
students.cs.uu.nl/people/rjchaaft/JCreator/.

