
Parallel Performance Tuning for Haskell

Don Jones Jr.
University of Kentucky
donnie@darthik.com

Simon Marlow
Microsoft Research

simonmar@microsoft.com

Satnam Singh
Microsoft Research

satnams@microsoft.com

Abstract
Parallel Haskell programming has entered the mainstream with
support now included in GHC for multiple parallel programming
models, along with multicore execution support in the runtime.
However, tuning programs for parallelism is still something of a
black art. Without much in the way of feedback provided by the
runtime system, it is a matter of trial and error combined with
experience to achieve good parallel speedups.

This paper describes an early prototype of a parallel profiling
system for multicore programming with GHC. The system com-
prises three parts: fast event tracing in the runtime, a Haskell library
for reading the resulting trace files, and a number of tools built on
this library for presenting the information to the programmer. We
focus on one tool in particular, a graphical timeline browser called
ThreadScope.

The paper illustrates the use of ThreadScope through a num-
ber of case studies, and describes some useful methodologies for
parallelizing Haskell programs.

1. Introduction
Life has never been better for the Parallel Haskell programmer:
GHC supports multicore execution out of the box, including multi-
ple parallel programming models: Strategies (Trinder et al. 1998),
Concurrent Haskell (Peyton Jones et al. 1996) with STM (Harris
et al. 2005), and Data Parallel Haskell (Peyton Jones et al. 2008).
Performance of the runtime system has received attention recently,
with significant improvements in parallel performance available in
the forthcoming GHC release (Marlow et al. 2009). Many of the
runtime bottlenecks that hampered parallel performance in earlier
GHC versions are much reduced, with the result that it should now
be easier to achieve parallel speedups.

However, optimizing the runtime only addresses half of the
problem; the other half being how to tune a given Haskell program
to run effectively in parallel. The programmer still has control over
task granularity, data dependencies, speculation, and to some extent
evaluation order. Getting these wrong can be disastrous for parallel
performance. For example, the granularity should neither be too
fine nor too coarse. Too coarse and the runtime will not be able to
effectively load-balance to keep all CPUs constantly busy; too fine
and the costs of creating and scheduling the tiny tasks outweigh the
benefits of executing them in parallel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

Current methods for tuning parallel Haskell programs rely
largely on trial and error, experience, and an eye for understanding
the limited statistics produced at the end of a program’s run by
the runtime system. What we need are effective ways to measure
and collect information about the runtime behaviour of parallel
Haskell programs, and tools to communicate this information to
the programmer in a way that they can understand and use to solve
performance problems with their programs.

In this paper we describe a new profiling system developed for
the purposes of understanding the parallel execution of Haskell pro-
grams. In particular, our system includes a tool called ThreadScope
that allows the programmer to interactively browse the parallel ex-
ecution profile.

This paper contributes the following:

• We describe the design of our parallel profiling system, and
the ThreadScope tool for understanding parallel execution.
Our trace file format is fully extensible, and profiling tools
built using our framework are both backwards- and forward-
compatible with different versions of GHC.
• Through several case studies, we explore how to use Thread-

Scope for identifying parallel performance problems, and de-
scribe a selection of methodologies for parallelising Haskell
code.

Earlier methodologies for parallelising Haskell code exist
(Trinder et al. 1998), but there are two crucial differences in the
multicore GHC setting. Firstly, the trade-offs are likely to be differ-
ent, since we are working with a shared-memory heap, and commu-
nication is therefore cheap1. Secondly, it has recently been discov-
ered that Strategies interact badly with garbage collection (Marlow
et al. 2009), so in this paper we avoid the use of the original Strate-
gies library, relying instead on our own simple hand-rolled parallel
combinators.

Our work is at an early stage. The ThreadScope tool displays
only one particular view of the execution of Parallel Haskell pro-
grams (albeit a very useful one). There are a wealth of possibilities,
both for improving ThreadScope itself and for building new tools.
We cover some of the possibilities in Section 6.

2. Profiling Motivation
Haskell provides a mechanism to allow the user to control the
granularity of parallelism by indicating what computations may
be usefully carried out in parallel. This is done by using functions
from the Control.Parallel module. The interface for Control.Parallel
is shown below:

par :: a → b → b
pseq :: a → b → b

1 though not entirely free, since memory cache hierarchies mean data still
has to be shuffled between processors even if that shuffling is not explicitly
programmed.

The function par indicates to the GHC run-time system that it may
be beneficial to evaluate the first argument in parallel with the
second argument. The par function returns as its result the value of
the second argument. One can always eliminate par from a program
by using the following identity without altering the semantics of the
program:

par a b = b

A thread is not necessarily created to compute the value of the
expression a. Instead, the GHC run-time system creates a spark
which has the potential to be executed on a different thread from
the parent thread. A sparked computation expresses the possibility
of performing some speculative evaluation. Since a thread is not
necessarily created to compute the value of a, this approach has
some similarities with the notion of a lazy future (Mohr et al. 1991).

We call such programs semi-explicitly parallel because the pro-
grammer has provided a hint about the appropriate level of gran-
ularity for parallel operations and the system implicitly creates
threads to implement the concurrency. The user does not need to
explicitly create any threads or write any code for inter-thread com-
munication or synchronization.

To illustrate the use of par we present a program that performs
two compute intensive functions in parallel. The first compute
intensive function we use is the notorious Fibonacci function:

fib :: Int → Int
fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

The second compute intensive function we use is the sumEuler
function taken from (Trinder et al. 2002):

mkList :: Int → [Int]
mkList n = [1..n−1]

relprime :: Int → Int → Bool
relprime x y = gcd x y == 1

euler :: Int → Int
euler n = length (filter (relprime n) (mkList n))

sumEuler :: Int → Int
sumEuler = sum . (map euler) . mkList

The function that we wish to parallelize adds the results of calling
fib and sumEuler:

sumFibEuler :: Int → Int → Int
sumFibEuler a b = fib a + sumEuler b

As a first attempt we can try to use par to speculatively spark off
the computation of fib while the parent thread works on sumEuler:

−− A wrong way to parallelize f + e
parSumFibEuler :: Int → Int → Int
parSumFibEuler a b

= f ‘par‘ (f + e)
where
f = fib a
e = sumEuler b

To create two workloads that take roughly the same amount of
time to execute we performed some experiments which show that
fib 38 takes roughly the same time to execute as sumEuler 5300.
The execution trace for this program as displayed by ThreadScope
is shown in Figure 1. This figure shows the execution trace of two
Haskell Execution Contexts (HECs), where each HEC corresponds
to a processor core. The x-axis is time. The purple portion of
each line shows at what time intervals a thread is running and
the orange (lighter coloured) bar shows when garbage collection

is occurring. Garbage collections are always “stop the world”, in
that all Haskell threads must stop during GC, but a GC may be
performed either sequentially on one HEC or in parallel on multiple
HECs; in Figure 1 we are using parallel GC.

We can examine the statistics produced by the runtime system
(using the flags +RTS -s -RTS) to help understand what went
wrong:

SPARKS: 1 (0 converted, 0 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 9.39s (9.61s elapsed)
GC time 0.37s (0.24s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 9.77s (9.85s elapsed)

The log shows that although a single spark was created, no
sparks where “converted”, i.e. executed. In this case the perfor-
mance bug is because the main thread immediately starts to work
on the evaluation of fib 38 itself which causes this spark to fizzle. A
fizzled spark is one that is found to be under evaluation or already
evaluated, so there is no profit in evaluating it in parallel. The log
also shows that the total amount of computation work done is 9.39
seconds (the MUT time); the time spent performing garbage collec-
tion was 0.37 seconds (the GC time); and the total amount of work
done amounts to 9.77 seconds with 9.85 seconds of wall clock time.
A profitably parallel program will have a wall clock time (elapsed
time) which is less than the total time2.

One might be tempted to fix this problem by swapping the
arguments to the + operator in the hope that the main thread will
work on sumEuler while the sparked thread works on fib:

−− Maybe a lucky parallelization
parSumFibEuler :: Int → Int → Int
parSumFibEuler a b

= f ‘par‘ (e + f)
where
f = fib a
e = sumEuler b

This results in the execution trace shown in Figure 2 which
shows a sparked thread being taken up by a spare worker thread.

The execution log for this program shows that a spark was used
productively and the elapsed time has dropped from 9.85s to 5.33s:

SPARKS: 1 (1 converted, 0 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 9.47s (4.91s elapsed)
GC time 0.69s (0.42s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 10.16s (5.33s elapsed)

While this trick works, it only works by accident. There is no
fixed evaluation order for the arguments to +, and GHC might
decide to use a different evaluation order tomorrow. To make the
parallelism more robust, we need to be explicit about the evaluation
order we intend. The way to do this is to use pseq3 in combination
with par, the idea being to ensure that the main thread works on
sumEuler while the sparked thread works on fib:

−− A correct parallelization that does not depend on

2 although to measure actual parallel speedup, the wall-clock time for the
parallel execution should be compared to the wall-clock time for the se-
quential execution.
3 Previous work has used seq for sequential evaluation ordering, but there
is a subtle difference between Haskell’s seq and the operator we need for
sequencing here. The details are described in Marlow et al. (2009).

Figure 1. No parallelization of f ‘par‘ (f + e)

Figure 2. A lucky parallelization of f ‘par‘ (e + f)

−− the evaluation order of +
parSumFibEuler :: Int → Int → Int
parSumFibEuler a b

= f ‘par‘ (e ‘pseq‘ (f + e))
where
f = fib a
e = sumEuler b

This version does not make any assumptions about the evalu-
ation order of +, but relies only on the evaluation order of pseq,
which is guaranteed to be stable.

This example as well as our wider experience of attempting to
write semi-explicit parallel programs shows that it is often very
difficult to understand if and when opportunities for parallelism
expressed through par are effectively taken up and to also under-
stand how operations like garbage collection influence the perfor-
mance of the program. Until recently one only had available high
level summary information about the overall execution of a parallel
Haskell program. In this paper we describe recent improvements to
the Haskell run-time which allow a much more detailed profile to
be generated which can then be used to help debug performance
problems.

3. Case Studies
3.1 Batcher’s Bitonic Parallel Sorter
Batcher’s bitonic merger and sorter is a parallel sorting algorithm
which has a good implementation in hardware. We have produced
an implementation of this algorithm in Haskell originally for cir-
cuit generation for FPGAs. However, this executable model also
represents an interesting software implicit parallelization exercise
because the entire parallel structure of the algorithm is expressed in
terms of just one combinator called par2:

par2 :: (a → b) → (c → d) → (a, c) → (b, d)
par2 circuit1 circuit2 (input1, input2)

= (output1, output2)
where
output1 = circuit1 input1

output2 = circuit2 input2

This combinator captures the idea of two circuits which are in-
dependent and execute in parallel. This combinator is used to define
other combinators which express different ways of performing par-
allel divide and conquer operations:
two :: ([a] → [b]) → [a] → [b]
two r = halve >→ par2 r r >→ unhalve

ilv :: ([a] → [b]) → [a] → [b]
ilv r = unriffle >→ two r >→ riffle

The halve combinator breaks a list into two sub-lists of even
length and the unhalve operate performs the inverse operation. The
riffile combinator permutes its inputs by breaking a list into two
halves and then interleaving the resulting lists. unriffle performs the
inverse permutation.

These combinators are in turn used to define a butterfly parallel
processing network which describes a merger:
butterfly circuit [x,y] = circuit [x,y]
butterfly circuit input

= (ilv (butterfly circuit) >→ evens circuit) input

The evens combinator breaks an input list into adjacent groups
of two elements and applies the circuit argument to each group.
A column of par-wise processing elements is used to combine the
results of two sub-merges:
evens :: ([a] → [b]) → [a] → [b]
evens f = chop 2 >→ map f >→ concat

The chop 2 combinator breaks a list into sub-lists of length 2.
This parallel Batcher’s bitonic merger plus the evens function can
be used to build a parallel Batcher’s bitonic sorter:
sortB cmp [x, y] = cmp [x, y]
sortB cmp input

= (two (sortB cmp) >→ sndList reverse >→ butterfly cmp) input

The sndList combinator breaks a list into two halves and applies
its argument circuit to the top halve and the identity function to the
bottom halve and then concatenates the sub-results into a single list.

A straightforward way to perform a semi-explicit parallelization
of the par2 combinator is use par to spark off the evaluation of one
of the sub-circuits.

par2 :: (a → b) → (c → d) → (a, c) → (b, d)
par2 circuit1 circuit2 (input1, input2)

= output1 ‘par‘ (output2 ‘pseq‘ (output1, output2))
where
output1 = circuit1 input1
output2 = circuit2 input2

This relatively simple change results in a definite performance
gain due to parallelism. Here is the log output produced by running
a test-bench program with just one Haskell execution context:

.\bsortpar.exe +RTS -N1 -l -qg0 -qb -sbsortpar-N1.log
SPARKS: 106496 (0 converted, 106496 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 5.32s (5.37s elapsed)
GC time 0.72s (0.74s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 6.04s (6.12s elapsed)

Although many sparks are created none are taken up because
there is only one worker thread. The execution trace for this invo-
cation is shown in Figure 3.

Running with two threads shows a very good performance im-
provement:

.\bsortpar.exe +RTS -N2 -l -qg0 -qb -sbsortpar-N2.log
SPARKS: 106859 (49 converted, 106537 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 4.73s (3.03s elapsed)
GC time 1.64s (0.72s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 6.36s (3.75s elapsed)

This example produces very many sparks most of which fizzle
but enough sparks are turned into productive work i.e. 6.36 seconds
worth of work done in 3.75 seconds of time. The execution trace for
this invocation is shown in Figure 4. There is an obvious sequen-
tial block of execution between 2.1 seconds and 2.9 seconds and
this is due to a sequential component of the algorithm which com-
bines the results of parallel sub-computations i.e the evens function.
We can use the parallel strategies library to change the sequential
application in the definition of evens to a parallel map operation:

evens :: ([a] → [b]) → [a] → [b]
evens f = chop 2 >→ parMap rwhnf f >→ concat

This results in many more sparks being converted:

.\bsortpar2.exe +RTS -N2 -l -qg0 -qb -sbsortpar2-N2.log
SPARKS: 852737 (91128 converted, 10175 pruned)

INIT time 0.00s (0.04s elapsed)
MUT time 4.95s (3.86s elapsed)
GC time 1.29s (0.65s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 6.24s (4.55s elapsed)

3.2 Soda
Soda is a program for solving word-search problems: given a rect-
angular grid of letters, find occurrences of a word from a supplied
list, where a word can appear horizontally, vertically, or diagonally,
in either direction (giving a total of eight possible orientations).

The program has a long history as a Parallel Haskell benchmark
(Runciman and Wakeling 1993). The version we start with here is

a recent incarnation, using a random initial grid with a tunable size.
The words do not in fact appear in the grid; the program just fruit-
lessly searches the entire grid for a predefined list of words. One
advantage of this formulation for benchmark purposes is that the
program’s performance does not depend on the search order, how-
ever a disadvantage is that the parallel structure is unrealistically
regular.

The parallelism is expressed using parListWHNF to avoid the
space leak issues with the standard strategy implementation of
parList (Marlow et al. 2009). The parListWHNF function is straight-
forwardly defined thus:

parListWHNF :: [a] -> ()
parListWHNF [] = ()
parListWHNF (x:xs) = x ‘par‘ parListWHNF xs

To establish the baseline performance, we run the program using
GHC’s +RTS -s flags, below is an excerpt of the output:

SPARKS: 12 (12 converted, 0 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 7.27s (7.28s elapsed)
GC time 0.61s (0.72s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 7.88s (8.00s elapsed)

We can see that there are only 12 sparks generated by this
program: in fact the program creates one spark per word in the
search list, of which there are 12. This rather coarse granularity will
certainly limit the ability of the runtime to effectively load-balance
as we increase the number of cores, but that won’t be an issue with
a small number of cores.

Initially we try with 4 cores, and with GHC’s parallel GC
enabled:

SPARKS: 12 (11 converted, 0 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 8.15s (2.21s elapsed)
GC time 4.50s (1.17s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 12.65s (3.38s elapsed)

Not bad: 8.00/3.38 is a speedup of around 2.4 on 4 cores. But
since this program has a highly parallel structure, we might hope to
do better.

Figure 5 shows the ThreadScope profile for this version of soda.
We can see that while an overall view of the runtime shows a
reasonable parallelization, if we zoom into the initial part of the
run (Figure 6) we can see that HEC 0 is running continuously,
but threads on the other HECs are running very briefly and then
immediately getting blocked (zooming in further would show the
individual events).

Going back to the program, we can see that the grid of letters
is generated lazily by a function mk grid. What is happening here
is that the main thread creates sparks before the grid has been
evaluated, and then proceeds to evaluate the grid. As each spark
runs, it blocks almost immediately waiting for the main thread to
complete evaluation of the grid.

This type of blocking is often not disastrous, since a thread will
become unblocked soon after the thunk on which it is blocking
is evaluated (see the discussion of “blackholes” in Marlow et al.
(2009)). There is nevertheless a short delay between the thread
becoming runnable again and the runtime noticing this and moving
the thread to the run queue. Sometimes this delay can be hidden if
the program has other sparks it can run in the meantime, but that

Figure 3. A sequential execution of bsort

Figure 4. A parallel execution of bsort

Figure 5. Soda ThreadScope profile

Figure 6. Soda ThreadScope profile (zoomed initial portion)

is not the case here. There are also costs associated with blocking
the thread and waking it up again, which we would like to avoid if
possible.

One way to avoid this is to evaluate the whole grid before
creating any sparks. This is achieved by adding a call to rnf:

−− force the grid to be evaluated:
evaluate (rnf grid)

The effect on the profile is fairly dramatic (Figure 7). We can see
that the parallel execution doesn’t begin until around 500ms into
the execution: creating the grid is taking quite a while. The program
also runs slightly faster in parallel now (a 6% improvement, or a
parallel speedup of 2.5 compared to 2.4):

SPARKS: 12 (11 converted, 0 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 7.62s (2.31s elapsed)
GC time 3.35s (0.86s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 10.97s (3.18s elapsed)

which we attribute to less blocking and unblocking of threads. We
can also see that this program now has a significant sequential
section - around 15% of the execution time - which limits the
maximum speedup we can achieve with 4 cores to 2.7, and we are
already very close to that at 2.5.

To improve parallelism further with this example we would have
to parallelize the creation of the initial grid; this probably isn’t hard,
but it would be venturing beyond the realms of realism somewhat
to optimize the creation of the input data for a synthetic benchmark,
so we conclude the case study here. It has been instructional to see
how thread blocking appears in the ThreadScope profile, and how
to avoid it by pre-evaluating data that is needed on multiple CPUs.

Here are a couple more factors that may be affecting the speedup
we see in this example:

• The static grid data is created on one CPU and has to be
fetched into the caches of the other CPUs. We hope in the
future to be able to show the rate of cache misses (and similar
characteristics) on each CPU alongside the other information in
the ThreadScope profile, which would highlight issues such as
this.
• The granularity is too large: we can see that the HECs finish

unevenly, losing a little parallelism at the end of the run.

3.3 minimax
Minimax is another historical Parallel Haskell program. It is based
on an implementation of alpha-beta searching for the game tic-tac-
toe, from Hughes’ influential paper “Why Functional Programming
Matters” (Hughes 1989). For the purposes of this paper we have
generalized the program to use a game board of arbitrary size: the
original program used a fixed 3x3 grid, which is too quickly solved
to be a useful parallelism benchmark nowadays. However 4x4 still
represents a sufficient challenge without optimizing the program
further.

For the examples that follow, the benchmark is to evaluate the
game tree 6 moves ahead, on a 4x4 grid in which the first 4 moves
have already been randomly played. This requires evaluating a
maximum of roughly 500,000,000 positions, although parts of the
game tree will be pruned, as we shall describe shortly.

We will explore a few different parallelizations of this program
using ThreadScope. The function for calculating the best line in the
game is alternate:

alternate depth player f g board

= move : alternate depth opponent g f board’
where

move@(board’,) = best f possibles scores
scores = map (bestMove depth opponent g f) possibles
possibles = newPositions player board
opponent = opposite player

This function calculates the sequence of moves in the game that
give the best outcome (as calculated by the alpha-beta search) for
each player. At each stage, we generate the list of possible moves
(newPositions), evaluate each move by alpha-beta search on the
game tree (bestMove), and pick the best one (best).

Let’s run the program sequentially first to establish the baseline
runtime:

14,484,898,888 bytes allocated in the heap

INIT time 0.00s (0.00s elapsed)
MUT time 8.44s (8.49s elapsed)
GC time 3.49s (3.51s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 11.94s (12.00s elapsed)

One obvious way to parallelize this problem is to evaluate each
of the possible moves in parallel. This is easy to achieve with a
parListWHNF strategy:

scores = map (bestMove depth opponent g f) possibles
‘using‘ parListWHNF

And indeed this does yield a reasonable speedup:

14,485,148,912 bytes allocated in the heap

SPARKS: 12 (11 converted, 0 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 9.19s (2.76s elapsed)
GC time 7.01s (1.75s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 16.20s (4.52s elapsed)

A speedup of 2.7 on 4 processors is a good start! However,
looking at the ThreadScope profile (Figure 8), we can see that there
is a jagged edge on the right: our granularity is too large, and we
don’t have enough work to keep all the processors busy until the
end. What’s more, as we can see from the runtime statistics, there
were only 12 sparks, corresponding to the 12 possible moves in the
4x4 grid after 4 moves have already been played. In order to scale
to more CPUs we will need to find more parallelism.

The game tree evaluation is defined as follows:

bestMove :: Int → Piece → Player → Player → Board
→ Evaluation

bestMove depth p f g
= mise f g
. cropTree
. mapTree static
. prune depth
. searchTree p

Where searchTree lazily generates a search tree starting from
the current position, with player p to play next. The function prune
prunes the search tree to the given depth, and mapTree static applies
a static evaluation function to each node in the tree. The function
cropTree prunes branches below a node in which the game has been
won by either player. Finally, mise performs the alpha-beta search,
where f and g are the min and max functions over evaluations for
the current player p.

We must be careful with parallelization here, because the algo-
rithm is relying heavily on lazy evaluation to avoid evaluating parts

Figure 7. Soda ThreadScope profile (evaluating the input grid eagerly)

Figure 8. Minimax ThreadScope profile

of the game tree. Certainly we don’t want to evaluate beyond the
prune depth, and we also don’t want to evaluate beyond a node in
which one player has already won (cropTree prunes further moves
after a win). The alpha-beta search will prune even more of the tree,
since there is no point exploring any further down a branch if it has
already been established that there is a winning move. So unless
we are careful, some of the parallelism we add here may be wasted
speculation.

The right place to parallelize is in the alpha-beta search itself.
Here is the sequential code:

mise :: Player → Player → Tree Evaluation → Evaluation
mise f g (Branch a []) = a
mise f g (Branch l) = foldr f (g OWin XWin) (map (mise g f) l)

The first equation looks for a leaf, and returns the evaluation of
the board at that point. A leaf is either a completed game (either
drawn or a winning position for one player), or the result of prun-
ing the search tree. The second equation is the interesting one: foldr
f picks the best option for the current player from the list of eval-
uations at the next level. The next level evaluations are given by
map (mise g f) l, which picks the best options for the other player
(which is why the f and g are reversed).

The map here is a good opportunity for parallelism. Adding a
parListWHNF strategy should be enough:

mise f g (Branch l) = foldr f (g OWin XWin)
(map (mise g f) l ‘using‘ parListWHNF)

However, this will try to parallelize every level of the search,
leading to some sparks with very fine granularity. Also it may
introduce too much speculation: elements in each list after a win
do not need to be evaluated. Indeed, if we try this we get:

22,697,543,448 bytes allocated in the heap

SPARKS: 4483767 (639031 converted, 3457369 pruned)

INIT time 0.00s (0.01s elapsed)
MUT time 16.19s (4.13s elapsed)
GC time 27.21s (6.82s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 43.41s (10.95s elapsed)

We ran a lot of sparks (600k), but we didn’t achieve much
speedup over the sequential version. One clue that we are actu-
ally speculating useless work is the amount of allocation. In the
sequential run the runtime reported 14GB allocated, but this paral-
lel version allocated 22GB4.

In order to eliminate some of the smaller sparks, we can paral-
lelize the alpha-beta to a fixed depth. This is done by introducing a
new variant of mise, parMise, that applies the parListWHNF strategy
up to a certain depth, and then calls the sequential mise beyond that.
Just using a depth of one gives quite good results:

SPARKS: 132 (120 converted, 12 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 8.82s (2.59s elapsed)
GC time 6.65s (1.70s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 15.46s (4.30s elapsed)

4 CPU time is not a good measure of speculative work, because in the
parallel runtime threads can sometimes be spinning while waiting for work,
particularly in the GC.

Figure 9. Minimax ThreadScope profile (with parMise 1)

Though as we can see from the ThreadScope profile (Figure 9),
there are some gaps. Increasing the threshold to two works nicely:

SPARKS: 1452 (405 converted, 1046 pruned)

INIT time 0.00s (0.03s elapsed)
MUT time 8.86s (2.31s elapsed)
GC time 6.32s (1.57s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 15.19s (3.91s elapsed)

We have now achieved a speedup of 3.1 on 4 cores against the
sequential code, and as we can see from the final ThreadScope
profile (Figure 10) all our cores are kept busy.

We found that increasing the threshold to 3 starts to cause
speculation of unnecessary work. In 4x4 tic-tac-toe most positions
are a draw, so it turns out that there is little speculation in the upper
levels of the alpha-beta search, but as we get deeper in the tree, we
find positions that are a certain win for one player or another, which
leads to speculative work if we evaluate all the moves in parallel.

Ideally GHC would have better support for speculation: right
now, speculative sparks are not garbage collected when they are
found to be unreachable. We do plan to improve this in the future,
but unfortunately changing the GC policy for sparks is incompati-
ble with the current formulation of Strategies (Marlow et al. 2009).

3.4 Thread Ring
The thread ring benchmark originates in the Compter Language
Benchmarks Game5 (formerly known as the Great Computer Lan-
guage Shootout). It is a simple concurrency benchmark, in which
a large number of threads are created in a ring topology, and then
messages are passed around the ring. We include it here as an exam-
ple of profiling a Concurrent Haskell program using ThreadScope,
in contrast to the other case studies which have investigated pro-
grams that use semi-explicit parallelism.

The code for our version of the benchmark is given in Figure 11.
This version uses a linear string of threads rather than a ring, where
a number of messages are pumped in to the first thread in the string,
and then collected at the other end.

Our aim is to try to make this program speed up in parallel.
We expect there to be parallelism available: multiple messages are
being pumped through the thread string, so we ought to be able to
pump messages through distinct parts of the string in parallel.

First, the sequential performance. This is for 500 messages and
2000 threads:

INIT time 0.00s (0.00s elapsed)

5 http://shootout.alioth.debian.org/

import Control.Concurrent
import Control.Monad
import System
import GHC.Conc (forkOnIO)

thread :: MVar Int → MVar Int → IO ()
thread inp out = do

x ← takeMVar inp
putMVar out $! x+1
thread inp out

spawn cur n = do
next ← newEmptyMVar
forkIO $ thread cur next
return next

main = do
n ← getArgs >>= readIO.head
s ← newEmptyMVar
e ← foldM spawn s [1..2000]
f ← newEmptyMVar
forkIO $ replicateM n (takeMVar e) >>= putMVar f . sum
replicateM n (putMVar s 0)
takeMVar f

Figure 11. ThreadRing code

MUT time 0.18s (0.19s elapsed)
GC time 0.01s (0.01s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.19s (0.21s elapsed)

Next, running the program on two cores:

INIT time 0.00s (0.00s elapsed)
MUT time 0.65s (0.36s elapsed)
GC time 0.02s (0.01s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.67s (0.38s elapsed)

Things are significantly slower when we add a core. Let’s ex-
amine the ThreadScope profile to see why - at first glance, the pro-
gram seems to be using both cores, but as we zoom in we can see
that there are lots of gaps (Figure 12).

In this program we want to avoid communication between the
two separate cores, because that will be expensive. We want as
much communication as possible to happen between threads on the
same core, where it is cheap. In order to do this, we have to give the
scheduler some help. We know the structure of the communication
in this program: messages are passed along the string in sequence,
so we can place threads optimally to take advantage of that. GHC

Figure 10. Minimax ThreadScope profile (with parMise 2)

Figure 12. ThreadRing profile (no explicit placement; zoomed in)

Figure 13. ThreadRing profile (with explicit placement)

Figure 14. ThreadRing profile (explicit placement and more messages)

provides a way to place a thread onto a particular core (or HEC),
using the forkOnIO operation. The placement scheme we use is to
divide the string into linear segments, one segment per core (in our
case two).

This strategy gets us back to the same performance as the
sequential version:

INIT time 0.00s (0.00s elapsed)
MUT time 0.23s (0.19s elapsed)
GC time 0.02s (0.02s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.26s (0.21s elapsed)

Why don’t we actually see any speedup? Figure 13 shows the
ThreadScope profile. The program has now been almost linearized;
there is a small amount of overlap, but most of the execution is
sequential, first on one core and then the other.

Investigating the profile in more detail shows that this is a
scheduling phenomenon. The runtime has moved all the messages
through the first string before it propagates any into the second
string, and this can happen because the total number of messages
we are using for the benchmark is less than the number of threads.
If we increase the number of messages, then we do actually see
more parallelism. Figure 14 shows the execution profile for 2000
messages and 2000 threads, and we can see there is significantly
more overlap.

4. Profiling Infrastructure
Our profiling framework comprises three parts:

• Support in GHC’s runtime for tracing events to a log file at run-
time. The tracing is designed to be as lightweight as possible,
so as not to have any significant impact on the behaviour of the
program being measured.
• A Haskell library ghc-events that can read the trace file gener-

ated by the runtime and build a Haskell data structure represent-
ing the trace.
• Multiple tools make use of the ghc-events library to read and

analyze trace files.

Having a single trace-file format and a library that parses it
means that it is easy to write a new tool that works with GHC trace
files: just import the ghc-events package and write code that uses
the Haskell data structures directly. We have already built several
such tools ourselves, some of which are merely proof-of-concept
experiments, but the ghc-events library makes it almost trivial to
create new tools:

• A simple program that just prints out the (sorted) contents of
the trace file as text. Useful for checking that a trace file can be
parsed, and for examining the exact sequence of events.
• The ThreadScope graphical viewer.
• A tool that parses a trace file and generates a PDF format

timeline view, similar to the ThreadScope view.
• A tool that generates input in the format expected by the Gtk-

Wave circuit waveform viewer. This was used as an early pro-
totype for ThreadScope, since the timeline view that we want to
display has a lot in common with the waveform diagrams that
gtkwave displays and browses.

4.1 Fast runtime tracing
The runtime system generates trace files that log certain events and
the time at which they occurred. The events are typically those
related to thread activity; for example, “HEC 0 started to run thread

3”, or “thread 5 blocked on an MVar”. The kinds of events we
can log are limited only by the extra overhead incurred by the
act of logging them. Minimizing the overhead of event logging is
something we care about: the goal is to profile the actual runtime
behaviour of the program, so it is important that, as far as possible,
we avoid disturbing the behaviour that we are trying to profile.

In the GHC runtime, a pre-allocated event buffer is used by
each HEC to store generated events. By doing so, we avoid any
dynamic memory allocation overhead, and require no locks since
the buffers are HEC-local. Yet, this requires us to flush the buffer
to the filesystem once it becomes full, but since the buffer is a
fixed size we pay a near-constant penalty for each flush and a
deterministic delay on the GHC runtime.

The HEC-local buffers are flushed independently, which means
that events in the log file appear out-of-order and have to be sorted.
Sorting of the events is easily performed by the profiling tool after
reading in the log file using the ghc-events library.

To measure the speed at which the GHC runtime can log events,
we used a C program (no Haskell code, just using the GHC runtime
system as a library) that simply generates 2,000,000 events, alter-
nating between “thread start” and “thread stop” events. Our pro-
gram generates a 34MB trace file and runs in 0.31 seconds elapsed
time:

INIT time 0.00s (0.02s elapsed)
MUT time 0.22s (0.29s elapsed)
GC time 0.00s (0.00s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.22s (0.31s elapsed)

which gives a rough figure of 150ns for each event on average.
Looking at the ThreadScope view of this program (Figure 15) we
can clearly see where the buffer flushes are happening, and that
each one is about 5ms long.

An alternative approach is to use memory-mapped files, and
write our events directly into memory, leaving the actual file writ-
ing to the OS. This would allow writing to be performed asyn-
chronously, which would hopefully reduce the impact of the buffer
flush. According to strace on Linux, the above test program is
spending 0.7s writing buffers, so making this asynchronous would
save us about 30ns per event on average. However, on a 32-bit ma-
chine where we can’t afford to reserve a large amount of address
space for the whole log file, we would still have to occasionally
flush and remap new portions of the file. This alternative approach
is something we plan to explore in the future.

To see how much impact event logging has on real execu-
tion times, we took a parallel version of the canonical Fibonacci
function, parfib, and compared the time elapsed with and without
event logging enabled for 50 executions of parfib on an Intel(R)
Core(TM)2 Duo CPU T5250 1.50GHz, using both cores. The pro-
gram generates about 2,000,000 events during the run, and gener-
ates a 40MB log file.

parfib eventlog
./Main 40 10 +RTS -N2 -l -RTS
Avg Time Elapsed Standard Deviation
20.582757s 0.789547s

parfib without eventlog
./Main 40 10 +RTS -N2 -RTS
Avg Time Elapsed Standard Deviation
17.447493s 1.352686s

Considering the significant number of events generated in the
traces and the very detailed profiling information made available
by these traces, the overhead does not have an immense impact
at approximately 10-25% increase in elapsed time. In the case

Figure 15. Synthetic event benchmark

of parfib, the event representing the creation of a new spark is
dominant, comprising at least 80% of the the events generated. In
fact, it is debatable whether we should be logging the creation of a
spark, since the cost of logging this event is likely to be larger than
the cost of creating the spark itself - a spark creation is simply a
write into a circular buffer.

For parallel quicksort, far fewer sparks are created and most of
the computation is spent in garbage collection; thus, we can achieve
an almost unnoticeable overhead from event tracing. The parallel
quicksort example involved sorting a list of 100,000 randomly
generated integers and was performed in the same manner as parfib
where we compare with event logging and without, yet in this test
we perform 100 executions on an Intel(R) Core(TM) 2 Quad CPU
3.0Ghz.

parquicksort eventlog
./Main +RTS -N4 -l -RTS
Avg Time Elapsed Standard Deviation
14.201385s 2.954869

parquicksort without eventlog
./Main +RTS -N4 -RTS
Avg Time Elapsed Standard Deviation
15.187529s 3.385293s

Since parallel quicksort spent the majority of the computation
doing useful work, particularly garbage collection of the created
lists, a trace file of only approximately 5MB and near 300,000
events was created and the overhead of event tracing is not notice-
able.

The crux of the event tracing is that even when a poorly per-
forming program utilizes event tracing, the overhead should still
not be devastating to the program’s performance, but best of all on
a program with high utilization event tracing should barely affect
the performance.

4.2 An extensible file format
We believe it is essential that the trace file format is both backwards
and forwards compatible, and architecture independent. In particu-
lar, this means that:

• If you build a newer version of a tool, it will still work with
the trace files you already have, and trace files generated by
programs compiled with older versions of GHC.
• If you upgrade your GHC and recompile your programs, the

trace files will still work with any profiling tools you already
have.
• Trace files do not have a shelf life. You can keep your trace

files around, safe in the knowledge that they will work with
future versions of profiling tools. Trace files can be archived,
and shared between machines.

Nevertheless, we don’t expect the form of trace files to remain
completely static. In the future we will certainly want to add new
events, and add more information to existing events. We therefore
need an extensible file format. Informally, our trace files are struc-
tured as follows:

• A list of event types. An event-type is a variable-length struc-
ture that describes one kind of event. The event-type structure
contains

A unique number for this event type

A field describing the length in bytes of an instance of the
event, or zero for a variable-length event.

A variable-length string (preceded by its length) describing
this event (for example “thread created”)

A variable-length field (preceded by its length) for future
expansion. We might in the future want to add more fields
to the event-type structure, and this field allows for that.

• A list of events. Each event begins with an event number that
corresponds to one of the event types defined earlier, and the
length of the event structure is given by the event type (or it has
variable length). The event also contains

A nanosecond-resolution timestamp.

For a variable-length event, the length of the event.

Information specific to this event, for example which CPU
it occurred on. If the parser knows about this event, then it
can parse the rest of the event’s information, otherwise it
can skip over this field because its length is known.

The unique numbers that identify events are shared knowledge
between GHC and the ghc-events library. When creating a new
event, a new unique identifier is chosen; identifiers can never be
re-used.

Even when parsing a trace file that contains new events, the
parser can still give a timestamp and a description of the unknown
events. The parser might encounter an event-type that it knows
about, but the event-type might contain new unknown fields. The
parser can recognize this situation and skip over the extra fields,
because it knows the length of the event from the event-type struc-
ture. Therefore when a tool encounters a new log file it can continue
to provide consistent functionality.

Of course, there are scenarios in which it isn’t possible to
provide this ideal graceful degradation. For example, we might
construct a tool that profiles a particular aspect of the behaviour
of the runtime, and in the future the runtime might be redesigned
to behave in a completely different way, with a new set of events.
The old events simply won’t be generated any more, and the old
tool won’t be able to display anything useful with the new trace
files. Still, we expect that our extensible trace file format will
allow us to smooth over the majority of forwards- and backwards-
compatibility issues that will arise between versions of the tools and

GHC runtime. Moreover, extensibility costs almost nothing, since
the extra fields are all in the event-types header, which has a fixed
size for a given version of GHC.

5. Related Work
GranSim (Loidl 1998) is an event-driven simulator for the paral-
lel execution of Glasgow Parallel Haskell (GPH) programs which
allows the parallel behaviour of Haskell programs to be analyzed
by instantiating any number of virtual processors which are em-
ulated by a single thread on the host machine. GranSim has an
associated set of visualization tools which show overall activity,
per-processor activity, and per-thread activity. There is also a sep-
arate tool for analyzing the granularity of the generated threads.
The GUM system (Trinder et al. 1996) is a portable parallel im-
plementation of Haskell with good profiling support for distributed
implementations.

The timeline view in ThreadScope is very similar to that of the
trace viewer for Eden (Loogen et al. 2005).

6. Conclusions and Further work
We have shown how thread-based profile information can be effec-
tively used to help understand and fix parallel performance bugs
in both Parallel Haskell and Concurrent Haskell programs, and we
expect these profiling tools to also be of benefit to developers using
Data Parallel Haskell in the future.

The ability to profile parallel Haskell programs plays an impor-
tant part in the development of such programs because the analysis
process motivates the need to develop specialized strategies to help
control evaluation order, extent and granularity as we demonstrated
in the minmax example.

Here are some of the future directions we would like to take this
work:

• Improve the user interface and navigation of ThreadScope. For
example, it would be nice to filter the display to show just a
subset of the threads, in order to focus on the behaviour of a
particular thread or group of threads.
• It would also be useful to understand how threads interact with

each other via MVars e.g. to make it easier to see which threads
are blocked on read and write accesses to MVars.
• The programmer should be able to generate events program-

matically, in order to mark positions in the timeline so that dif-
ferent parts of the program’s execution can easily be identified
and separated in ThreadScope.
• It would be straightforward to produce graphs similar to those

from the GpH and GranSim programming tools (Trinder et al.
2002; Loidl 1998), either by writing a Haskell program to
translate the GHC trace files into the appropriate input for these
tools, or by rewriting the tools themselves in Haskell.
• Combine the timeline profile with information from the OS

and CPU. For example, for IO-bound concurrent programs we
might like to see IO or network activity displayed on the time-
line. Information from CPU performance counters could also
be superimposed or displayed alongside the thread timelines,
providing insight into cache behaviour, for example.
• Have the runtime system generate more tracing information, so

that ThreadScope can display information about such things as
memory usage, run queue sizes, spark pool sizes, and foreign
call activity.

Acknowledgments
The authors would like to acknowledge the work of the developers
of previous Haskell concurrent and parallel profiling systems which
have provided much inspiration for our own work. Specifically
work on GpH, GranSim and Eden was particularly useful.

We wish to thank Microsoft Research for funding Donnie Jones’
visit to Cambridge in 2008 during which he developed an early
prototype of event tracing in GHC.

References
Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.

Composable memory transactions. In PPoPP ’05: Proceedings of the
tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 48–60, New York, NY, USA, 2005. ACM. ISBN
1-59593-080-9. doi: http://doi.acm.org/10.1145/1065944.1065952.

John Hughes. Why functional programming matters. The Computer
Journal, 32(2):98–107, April 1989.

H-W. Loidl. Granularity in Large-Scale Parallel Functional Programming.
PhD thesis, Department of Computing Science, University of Glasgow,
March 1998.

Rita Loogen, Yolanda Ortega-Malln, and Ricardo Pea-Mar. Parallel func-
tional programming in Eden. Journal of Functional Programming, 3
(15):431–475, 2005.

Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime sup-
port for multicore Haskell. In ICFP’09: The 14th ACM SIGPLAN Inter-
national Conference on Functional Programming, Edinburgh, Scotland,
2009.

E. Mohr, D. A. Kranz, and R. H. Halstead. Lazy task creation – a technique
for increasing the granularity of parallel programs. IEEE Transactions
on Parallel and Distributed Systems, 2(3), July 1991.

S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. of
POPL’96, pages 295–308. ACM Press, 1996.

Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel
M. T. Chakravarty. Harnessing the multicores: Nested data parallelism
in Haskell. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2008), 2008.

Colin Runciman and David Wakeling. Profiling parallel functional compu-
tations (without parallel machines). In Glasgow Workshop on Functional
Programming, pages 236–251. Springer, 1993.

PW Trinder, K Hammond, JS Mattson, AS Partridge, and SL Pey-
ton Jones. GUM: a portable parallel implementation of Haskell. In
ACM Conference on Programming Languages Design and Implementa-
tion (PLDI’96). Philadelphia, May 1996.

P.W. Trinder, K. Hammond, H.-W. Loidl, and Simon Peyton Jones. Algo-
rithm + Strategy = Parallelism. Journal of Functional Programming, 8
(1):23–60, January 1998. URL http://research.microsoft.com/
Users/simonpj/Papers/strategies.ps.gz.

P.W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and Distributed
Haskells. Journal of Functional Programming, 12(5):469–510, July
2002.

