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Abstract
We present a parallel generational-copying garbage collector im-
plemented for the Glasgow Haskell Compiler. We use a block-
structured memory allocator, which provides a natural granularity
for dividing the work of GC between many threads, leading to a
simple yet effective method for parallelising copying GC. The re-
sults are encouraging: we demonstrate wall-clock speedups of on
average a factor of 2 in GC time on a commodity 4-core machine
with no programmer intervention, compared to our best sequential
GC.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Languages, Performance

1. Introduction
Garbage collection (GC) involves traversing the live data struc-
tures of a program, a process that looks parallel even in sequential
programs. Like many apparently-parallel tasks, however, achieving
wall-clock speedups on real workloads is trickier than it sounds.

In this paper we report on parallel GC applied to the Glasgow
Haskell Compiler. This area is dense with related work, as we dis-
cuss in detail in Section 6, so virtually no individual feature of our
design is new. But the devil is in the details: our paper describes
a tested implementation of a full-scale parallel garbage collector,
integrated with a sophisticated storage manager that supports gen-
erations, finalisers, weak pointers, stable pointers, and the like. We
offer the following new contributions:

• We parallelise a copying collector based on a block-structured
heap (Section 3). The use of a block-structured heap affords
great flexibility and, in particular, makes it easy to distribute
work in chunks of variable size.
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• We extend this copying collector to a generational scheme
(Section 4), an extension that the block-structured heap makes
quite straightforward.

• We exploit the update-once property, enjoyed by thunks in a
lazy language, to reduce garbage-collection costs by using a
new policy called eager promotion (Section 4.1).

• We implement and measure our collector in the context of an
industrial-strength runtime (the Glasgow Haskell Compiler),
using non-toy benchmarks, including GHC itself (Section 5).
We give bottom-line wall-clock numbers, of course, but we
also try to give some insight into where the speedups come
from by defining and measuring a notion of work imbalance
(Section 5.3).

To allay any confusion, we are using the term block-structured here
to mean that the heap is divided into fixed-size blocks, not in the
sense of a block-structured programming language.

In general, our use of a block-structured heap improves on ear-
lier work in terms of simplicity (fewer runtime data structures) and
generality (an arbitrary number of independently re-sizable gener-
ations, with aging), and yet achieves good speedups on commodity
multiprocessor hardware. We see speedups of between a factor of
1.5 and 3.2 on a 4-processor machine. Against this speedup must
be counted a slow-down of 20-30% because of the extra locking
required by parallel collection — but we also describe a promising
approach for reducing this overhead (Section 7.1).

The bottom line is that on a dual-core machine our parallel GC
reduces wall-clock garbage-collection time by 20% on average,
while a quad-core can achieve more like 45%. These improvements
are extremely worthwhile, given that they come with no program-
mer intervention whatsoever; and they can be regarded as lower
bounds, because we can already see ways to improve them. Our
collector is expected to be shipped as part of a forthcoming release
of GHC.

2. The challenge we address
The challenge we tackle is that of performing garbage collection
in parallel in a shared-memory multiprocessor; that is, employing
many processors to perform garbage collection faster than one
processor could do alone.

We focus on parallel, rather than concurrent, collection. In a
concurrent collector the mutator and collector run at the same time,
whereas we only consider garbage collecting in parallel while the
mutator is paused. The mutator is free to use multiple processors



too, of course, but even if the mutator is purely sequential, parallel
garbage collection may still be able to reduce overall run-time.

2.1 Generational copying collection
Our collector is a generational, copying collector [Ung84], which
we briefly summarise here to establish terminology. The heap is
divided into generations, with younger generations having smaller
numbers. Whenever generation n is collected, so are all younger
generations. A remembered set for generation n keeps track of all
pointers from generation n into younger ones. In our implementa-
tion, the remembered set lists all objects that contain pointers into
a younger generation, rather than listing all object fields that do so.
Not only does this avoid interior pointers, but it also requires less
administration when a mutable object is repeatedly mutated.

To collect generations 0−n, copy into to-space all heap objects
in generations 0 − n that are reachable from the root pointers,
or from the remembered sets of generations older than n. More
specifically:

• Evacuate each root pointer and remembered-set pointer. To
evacuate a pointer, copy the object it points to into to-space,
overwrite the original object (in from-space) with a forwarding
pointer to the new copy of the object, and return the forwarding
pointer. If the object has already been evacuated, and hence
has been overwritten with a forwarding pointer, just return that
pointer.

• Scavenge each object in to-space; that is, evacuate each pointer
in the object, replacing the pointer with the address of the evac-
uated object. When all objects in to-space have been scavenged,
garbage collection is complete.

Objects are promoted from a younger to an older generation, based
on a tenuring policy. Most objects die young (the “weak genera-
tional hypothesis”), so it is desirable to avoid promoting very young
objects so they have an opportunity to perish. A popular policy is
therefore to promote an object from generation n to n+1 only
when it has survived kn garbage collections, for some kn chosen
independently for each generation. Rather than attach an age to
every object, they are commonly partitioned by address, by sub-
dividing each generation n into kn steps. Then objects from step
kn of generation n are promoted to generation n+1, while objects
from younger steps remain in generation n, but with an increased
step count.

It seems obvious how to parallelise a copying collector: differ-
ent processors can evacuate or scavenge different objects. All the
interest is in the details. How do we distribute work among the pro-
cessors, so that all are busy but the overheads are not too high?
How do we balance load between processors? How do we ensure
that two processors do not copy the same data? How can we avoid
unnecessary cache conflicts? Garbage collection is a very memory-
intensive activity, so memory-hierarchy effects are dominant.

Before we can discuss these choices, we first describe in more
detail the architecture of our heap.

2.2 The block-structured heap
Most early copying garbage collectors partitioned memory into two
large contiguous areas of equal size, from-space and to-space, to-
gether perhaps with an allocation area or nursery in which new ob-
jects are allocated. Dividing the address space in this way is more
awkward for generational collection, because it is not clear how big
each generation should be — and indeed these sizes may change
dynamically. Worse still, the steps of each generation further sub-
divide the space, so that we have n∗k spaces, each of unpredictable
size. Matters become even more complicated if there are multiple
mutator or garbage collector threads, because then we need multi-
ple allocation areas and to-spaces respectively.

Info pointer

Info

table

Payload

Object type

Layout info

Entry code

... ... ...

Type-specific

fields

Figure 1. A heap object

Thus motivated, GHC’s storage manager uses a block-structured
heap. Although this is not a new idea [DEB94, Ste77], the literature
is surprisingly thin, so we pause to describe how it works.

• The heap is divided into fixed-size B-byte blocks. Their exact
size B is not important, except that it must be a power of 2.
GHC uses 4kbytes blocks by default, but this is just a compile-
time constant and is easily changed.

• Each block has an associated block descriptor, which describes
the generation and step of the block, among other things. Any
address within a block can be mapped to its block descriptor
with a handful of instructions - we discuss the details of this
mapping in Section 2.3.

• Blocks can be linked together, through a field in their descrip-
tors, to form an area. For example, after garbage collection the
mutator is provided with an allocation area of free blocks in
which to allocate fresh objects.

• The heap contains heap objects, whose layout is shown in Fig-
ure 1. From the point of view of this paper, the important point
is that the first word of every heap object, its info pointer, points
to its statically-allocated info table, which in turn contains lay-
out information that guides the garbage collector.

• A heap pointer always addresses the first word of a heap object;
we do not support interior pointers.

• A large object, whose size is greater than a block, is allocated
in a block group of contiguous blocks.

Free heap blocks are managed by a simple block allocator, which
allows its clients to allocate and free block groups. It does simple
coalescing of free blocks, in constant time, to reduce fragmentation.
If the block allocator runs out of memory, it acquires more from the
operating system.

Dividing heap memory into blocks carries a modest cost in
terms of implementation complexity, but it has numerous benefits.
We consider it to be one of the best architectural decisions in the
GHC runtime:

• Individual regions of memory (generations, steps, allocation
areas), can be re-sized at will, and at run time. There is no need
for the blocks of a region to be contiguous; indeed usually they
are not.

• Large objects need not be copied; each step of each generation
contains a linked list of large objects that belong to that step, and
moving an object from one step to another involves removing it
from one list and linking it onto another.

• There are places where it is inconvenient or even impossible
to perform (accurate) garbage collection, such as deep inside a
runtime system C procedure (e.g. the GMP arbitrary-precision
arithmetic library). With contiguous regions we would have to



estimate how much memory is required in the worst case before
making the call, but without the requirement for contiguity we
can just allocate more memory on demand, and call the garbage
collector at a more convenient time.

• Memory can be recycled more quickly: as soon as a block has
been freed it can be re-used in any other context. The benefit of
doing so is that the contents of the block might still be in the
cache.

Some of these benefits could be realised without a block-
structured heap if the operating system gave us more control over
the underlying physical-to-virtual page mapping, but such tech-
niques are non-portable if they are available at all. The block-
structured heap idea in contrast requires only a way to allocate
memory, which enables GHC’s runtime system to run on any plat-
form.

2.3 Block descriptors
Each block descriptor contains the following fields:

• A link field, used for linking blocks together into an area.
• A pointer to the first un-allocated (free) word in the block.
• A pointer to the first pending object, used only during garbage

collection (see Section 3.4).
• The generation and step of the block. Note that all objects in a

block therefore reside in the same generation and step.
• If this is a block group, its size in blocks.

Where should block descriptors live? Our current design is to
allocate memory from the operating system in units of an M -byte
megablock, aligned on an M -byte boundary. A megablock consists
of just under M/B contiguous block descriptors followed by the
same number of contiguous blocks. Each descriptor is a power-of-
2 in size. Hence, to get from a block address to its descriptor, we
round down (mask low-order bits) to get the start of the megablock,
and add the block number (mask high-order bits) suitably shifted.

An alternative design would be to have variable-sized blocks,
each a multiple of B bytes, with the block descriptor stored in the
first few bytes of the block. In order to make it easy to transform a
heap pointer to its block descriptor, we would impose the invariant
that a heap object must have its first word allocated in the first B
bytes of its block.

3. Parallel Copying GC
We are now ready to describe our parallel collector. We should
stress that while we have implemented and extensively tested the
algorithms described here, we have not formally proven their cor-
rectness.

We focus exclusively on non-generational two-space copying in
this section, leaving generational collection until Section 4.

We will suppose that GC is carried out by a set of GC threads,
typically one for each physical processor. If a heap object has been
evacuated but not yet scavenged we will describe it as a pending
object, and the set of (pointers to) pending objects as the pending
set. The pending set thus contains to-space objects only.

The most obvious scheme for parallelising a copying collector
is as follows. Maintain a single pending set, shared between all
threads. Each GC thread performs the following loop:

while (pending set non-empty) {
remove an object p from the pending set
scavenge(p)
add any newly-evacuated objects to the pending set

}

3.1 Claiming an object for evacuation
When a GC thread evacuates an object, it must answer the question
“has this object already been evacuated, and been overwritten with
a forwarding pointer?”. We must avoid the race condition in which
two GC threads both evacuate the same object at the same time.
So, like every other parallel copying collector known to us (e.g.
[FDSZ01, ABCS01]), we use an atomic CAS instruction to claim
an object when evacuating it.

The complete strategy is as follows: read the header, if the
object is already forwarded then return the forwarding pointer.
Otherwise claim the object by atomically writing a special value
into the header, spinning if the header indicates that the object is
already claimed. Having claimed the object, if the object is now
a forwarding pointer, unlock it and return the pointer. Otherwise,
copy it into to-space, and unlock it again by writing the forwarding
pointer into the header.

There are variations on this scheme that we considered, namely:

• Claim the object before testing whether it is a forwarding
pointer. This avoids having to re-do the test later, at the expense
of unnecessarily locking forwarding pointers.

• Copy the object first, and then write the forwarding pointer
with a single CAS instruction. This avoids the need to spin, but
means that we have to de-allocate the space we just allocated
(or just waste a little space) in the event of a collision.

We believe the first option would be pessimal, as it does un-
necessary locking. The second option may be an improvement, but
probably not a measurable one, since as we show later the fre-
quency of collisions at the object level is extremely low.

This fine-grain per-object locking constitutes the largest single
overhead on our collector (measurements in Section 5.1), which
is frustrating because it is usually unnecessary since sharing is
relatively rare. We discuss some promising ideas for reducing this
overhead in Section 7.1.

3.2 Privatising to-space
It is obviously sensible for each GC thread to allocate in a private
to-space block, so that no inter-thread synchronisation need take
place on allocation. When a GC thread fills up a to-space block, it
gets a new one from a shared pool of free blocks.

One might worry about the fragmentation arising from having
one partly-filled block for each GC thread at the end of garbage
collection. However, the number of blocks in question is small
compared with the total heap size and, in any case, the space in
these blocks is available for use as to-space in subsequent GCs (we
discuss fragmentation further in Section 5.6).

3.3 The Pending Block Set
The challenge is to represent the pending set efficiently, because
operations on the pending set are in the inner loop of the collector.
Cheney’s original insight [Che70] was to allocate objects contigu-
ously in to-space, so that the pending set is represented by to-space
itself ; more precisely, the pending set is the set of objects between
the to-space allocation pointer and the scavenge pointer. As each
object is copied into to-space, the to-space allocation pointer is in-
cremented; as each object is scavenged the scavenge pointer is in-
cremented. When the two coincide, the pending set is empty, and
the algorithm terminates.

Cheney’s neat trick sets the efficiency bar. We cannot rely on
parallel performance making up for a significant constant-factor
slowdown: the parallelism available depends on the data structures
and the heap, and some heaps may feature linear lists without any
source of GC parallelism.
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Figure 2. The state of a GC thread

Representing the pending set by a separate data structure in-
curs an immediate overhead. We measured the low bound on such
overhead to be in the region of 7-8% - this figure was obtained by
writing the address of every evacuated object into a small circular
buffer, which is essentially the least that any algorithm would have
to do in order to store the pending set in a data structure. Note that
Flood et al [FDSZ01] use a work-stealing queue structure to store
the pending set, so their algorithm presumably incurs this overhead.

If we do not store the pending set in a separate data structure,
and use to-space as the pending set, then the challenge becomes
how to divide up the pending set between threads in a parallel GC.
Imai and Tick [IT93] divide to-space into blocks, and use the set
of such blocks as the pool from which threads acquire work. In our
setting this scheme seems particularly attractive, because our to-
space is already divided into blocks! However, dividing the work
into chunks may incur some loss of parallelism if we pick the chunk
size too high, as our measurements show (Section 5.4).

We call the set of blocks remaining to be scavenged the Pending
Block Set. In our implementation, it is represented by a single list
of blocks linked together via their block descriptors, protected by a
mutex. One could use per-thread work-stealing queues to hold the
set of pending blocks [ABP98], but so far (using only a handful of
processors) we have found that there is negligible contention when
using a conventional lock to protect a single data structure; we give
measurements in Section 5.5.

3.4 How scavenging works
During scavenging, a GC thread therefore maintains the following
thread-local state (see Figure 2):

• A Scan Block, which is being scavenged (aka scanned).
• A scan pointer, S, which points to the next pending object in

the Scan Block. Earlier objects in the Scan Block have already
been scavenged (labelled “Done” in Figure 2).

• A scan limit, SL, which points one byte beyond the end of the
last pending object in the Scan Block.

• An Allocation Block, into which objects are copied when they
are evacuated from from-space.

• A to-space allocation pointer H, pointing to the first free word
in the Allocation Block.

• A to-space limit pointer HL, which points one beyond the last
word available for allocation in the Allocation Block.

• The Scan Block and the Allocation Block may be distinct, but
they may also be the very same block. This can happen when
there are very few pending objects, so the scan pointer S is close

Scan and
Allocation

blocks

H reaches HL
(Allocation Block full)

S reaches SL
(Scan Block empty)

(a) distinct (1) Export the full
Allocation Block to the
Pending Block Set; get a
fresh Allocation Block
from the free list; initialise
H, HL; stay in (a).

(2) Initialise S, SL to point
to the Allocation Block;
move to (b).

(b) coincide (3) Get new Allocation
Block from the free list;
initialise H, HL; move to
(a).

(4) Get new Scan Block
from Pending Block Set;
initialise S, SL; move to
(a).

Figure 3. State transactions in scavenging

behind the allocation pointer H; this can happen, for example,
when scavenging a linked list of heap objects.

Figure 2 illustrates the two situations: (a) when the Scan Block and
Allocation Block are distinct, and (b) when the two coincide. In
case (a), when S reaches SL, the Scan Block has been fully scanned.
When the two blocks coincide (case (b)), the allocation pointer H
is the scan limit; that is, we assume that SL is always equal to H,
although in the actual implementation we do not move two pointers,
of course.

As the scavenging algorithm proceeds there are two interesting
events that can take place: H reaches HL, meaning that the allocation
block is full; and S reaches SL (or H in case (b)), meaning that
there are no more pending objects in the Scan Block. The table
in Figure 3 shows what happens for these two events.

Work is exported to the Pending Block Set in transition (1) when
the Allocation Block is full, and is imported in transition (4) when
the GC thread has no pending objects of its own. Notice that in
transition (4) the Allocation Block remains unchanged, and hence
the Allocation Block may now contain fully-scavenged objects, even
though it is distinct from the Scan Block. That is why there is a
“Done” region in the Allocation Block of Figure 2(a). The block
descriptor contains a field (used only during garbage collection)
that points just past these fully-scavenged objects, and this field is
used to initialise S when the block later becomes the Scan Block in
transitions (2) or (4).

3.5 Initiation and termination
GC starts by evacuating the root pointers, which in the case of a
sequential Haskell program will often consist of the main thread’s
stack only. Traversal of the stack cannot be parallelised, so in this
case GC only becomes parallel when the first GC thread exports
work to the Pending Block Set. However, when running a paral-
lel Haskell program [HMP05], or even just a Concurrent Haskell
program, there will be more roots, and GC can proceed in parallel
from the outset.

The scavenging algorithm of the previous sub-section is then
executed by each GC thread until the Pending Block Set is empty.
That does not, of course, mean that garbage collection has termi-
nated, because other GC threads might be just about to export work
into the Pending Block Set. However the algorithm to detect global
termination is fairly simple. Here is a sketch of the outer loop of a
GC thread:

gc_thread()
{ loop:

scan_all();
// Returns when Pending Block Set is empty

running_threads--; // atomically
while (running_threads != 0) {

if (any_pending_blocks()) {



// Found non-empty Pending Block Set
running_threads++; // atomically
goto loop;

}
} // only exits when all threads are idle

}

Here, running_threads is initialised to the number of GC
threads. The procedure scan_all repeatedly looks for work in the
Pending Block Set, and returns only when the set is empty. Then
gc_thread decrements the number of running threads, and waits
for running_threads to reach zero. (There is no need to hold a
mutex around this test, because once running_threads reaches
zero, it never changes again.) While other threads are active, the
current thread polls the Pending Block Set to look for work. It
is easy to reason that when running_threads reaches zero, all
blocks are scanned. This termination algorithm was originally pro-
posed by Flood et. al. [FDSZ01], although it differs slightly from
the one used in their implementation.

3.6 When work is scarce
The block-at-a-time load-balancing scheme works fine when there
is plenty of work. But when work is scarce, it can over-sequentialise
the collector. For example, if we start by evacuating all the roots
into a single block, then work will only spread beyond one GC
thread when the scavenge pointer and the to-space allocation
pointer get separated by more than a block, so that the GC thread
makes transition (1) (Figure 3). And this may never happen! Sup-
pose that the live data consists of two linear lists, whose root cells
are both in a block that is being scavenged by GC thread A. Then
there will always be exactly two pending objects between S and H,
so thread A will do all the work, even though there is clearly enough
work for two processors. We have found this to be an important
problem in practice, as our measurements show (Section 5.4).

The solution is inescapable: when work is scarce, we must
export partly-full blocks into the Pending Block Set. We do this
when (a) the size of the Pending Block Set is below some threshold,
(b) the Allocation Block has a reasonable quantum, Q, of un-
scanned words (so that there is enough work to be worth exporting),
and (c) the Scan Block also has at least Q un-scanned words (so
that the current GC thread has some work to do before it goes to
get more work from the Pending Block Set). We set the parameter
Q by experimental tuning, although it would also be possible to
change it dynamically.

This strategy leads to a potential fragmentation problem. When
a pending block is fully scanned, it normally plays no further role in
that garbage collection cycle. But we do not want to lose the space
in a partly-full, but now fully-scanned block! The solution is easy.
We maintain a Partly Free List of such partly-full, but fully-scanned
blocks. When the GC wants a fresh Allocation Block, instead of
going straight to the block allocator, it first looks in the Partly Free
List. To reduce synchronisation we maintain a private Partly Free
List for each GC thread.

3.7 Experiences with an early prototype
Ideas that work well in theory or simulation may not work well
in real life, as our first parallel collector illustrated perfectly. With
one processor it took K instructions to complete garbage collec-
tion. With two processors, each processor executed roughly K/2
instructions, but the elapsed time was unchanged! This was not
simply the fixed overhead of atomic instructions, because we ar-
ranged that our one-processor baseline executed those instructions
too.

The problem, which was extremely hard to find, turned out
to be that we were updating the block descriptors unnecessarily
heavily, rather than caching their fields in thread-local storage. Two

adjacent block descriptors often share a common cache line, so two
processors modifying adjacent block descriptors would cause stalls
as the system tried to resolve the conflict.

It is hard to draw any general lessons from this experience,
except to say that no parallel algorithm should be trusted until
it demonstrates wall-clock speedups against the best sequential
algorithm running on the same hardware.

4. Parallel generational copying
We have so far concentrated on a single-generation collector. Hap-
pily, it turns out that our parallel copying scheme needs little modi-
fication to be adapted to a multi-generational copying collector, in-
cluding support for multiple steps in each generation. The changes
are these:

• Each GC thread maintains one Allocation Block for each step
of each generation (there is still just a single Scan block).

• When evacuating an object, the GC must decide into which
generation and step to copy the object, a choice we discuss in
Section 4.1.

• The GC must implement a write-barrier to track old-to-new
pointers, and a remembered set for each generation. Currently
we use a single, shared remembered set for each generation
protected by a mutex. It would be quite possible instead to have
a thread-local remembered set for each generation if contention
for these mutexes became a problem.

• When looking for work, a GC thread always seeks to scan the
oldest-possible block (we discuss this choice in Section 4.2).

That’s all there is to it!

4.1 Eager promotion
Suppose that an object W in generation 0 is pointed to by an im-
mutable object in generation 2. Then there is no point in moving W
slowly through the steps of generation 0, and thence into generation
1, and finally into generation 2. Object W cannot die until genera-
tion 2 is collected, so we may as well promote it, and everything
reachable from it, into generation 2 immediately, regardless of its
current location. This is the idea we call eager promotion.

One may wonder how often we have an object that is both
(a) immutable and (b) points into a younger generation. After all,
immutable objects such as list cells are allocated with pointers that
are, by definition, older than the list cell itself. Only mutable objects
can point to younger objects. But for objects that are repeatedly
mutated, eager promotion may not be a good idea because it may
promote a data structure that then becomes unreachable when the
old-generation cell is mutated again.

For a lazy functional language, however, eager promotion is
precisely right for thunks. A thunk is a suspended computation that
is updated, exactly once, when the thunk is demanded. The update
means that there may be an old-to-new pointer, while the semantics
of the language means that the thunk will not be updated again.

As a result, when evacuating an object W into to-space, that has
not already been evacuated, we choose its destination as follows:

• If the object that points to W is immutable, evacuate W into the
same generation and step as that object.

• Otherwise, move the object to the next step of the current
generation, or if it is already in the last step, to the first step
of the next generation.

Notice the phrase “that has not already been evacuated”. There may
be many pointers to W, and if we encounter the old-to-new pointer
late in the game, W may have already been copied into to-space
and replaced with a forwarding pointer. Then we cannot copy it
again, because other to-space objects might by now be pointing to



the copy in to-space, so the old-to-new pointer remains. In general,
when completing the scavenging of an object, the GC records the
object in its generation’s remembered set if any of the pointers in
the object point into a younger generation.

We quantify the benefit of doing eager promotion in Section 5.7.

4.2 Eager promotion in parallel collection
Eager promotion makes it advantageous to scavenge older genera-
tions first, so that eager promotion will promote data into the oldest
possible generation. What are the implications for a parallel gener-
ational system?

First, we maintain a Pending Block Set for each generation, so
that in transition (4) of Figure 3 we can pick the oldest Pending
Block.

Transition (2) offers two possible alternatives (remembering
that each GC thread maintains an Allocation Block for each step
of each generation):

1. Pick the oldest Allocation Block that has work. If none of them
have pending objects, pick the the oldest Pending Set block.

2. Pick the oldest block we can find that has work, whether be it
from a Pending Block Set or one of our own Allocation Blocks.

The first policy attempts to maximise parallelism, by not taking
blocks from the shared pending set if there is local work available.
The second attempts to maximise eager promotion, by always pick-
ing the oldest objects to scan first.

Note that eager promotion introduces some non-determinism
into the parallel GC. Since it now matters in which order we
scavenge objects, and the order may depend on arbitrary scheduling
of GC threads, the total amount of work done by the GC may vary
from run to run. In practice we have found this effect to be small on
the benchmarks we have tried: the number of bytes copied in total
varies by up to 2%.

5. Measurements
We chose a selection of programs taken from the nofib [Par92] and
nobench [Ste] Haskell benchmarking suites, taking those (disap-
pointingly few) programs that spent a significant amount of time in
the garbage collector. The programs we measured, with a count of
the number of source code lines in each, are:

• GHC, the Haskell compiler itself (190,000 lines)
• circsim, a circuit simulator (700 lines)
• constraints, a constraint solver (300 lines)
• fibheaps, a fibonacci heap benchmark (300 lines)
• fulsom, a solid modeller (1,400 lines)
• gc bench, an artificial GC benchmark1 (300 lines)
• happy, a Yacc-style parser generator for Haskell (5,500 lines)
• lcss, Hirschberg’s LCSS algorithm (60 lines)
• power, a program for calculating power series (140 lines)
• spellcheck, checks words against a dictionary (10 lines)

One thing to note is that the benchmarks we use are all pre-
existing single-threaded programs. We expect to see better results
from multithreaded or parallel programs, because such programs
will typically have a wider root set: when there are multiple thread
stacks to treat as roots, we can start multiple GC threads to scan
them in parallel, whereas for a single-threaded programs the root
set usually consists of the main thread’s stack only, so it can be
longer until there is enough work to supply to the other GC threads.

1 Translated from the Java gc bench by Hans Boehm, who credits John
Ellis and Pete Kovac of Post Communications as the original creators. This
benchmark uses a lot of mutation, which is atypical for a Haskell program.

Program ∆ Time (%)
circsim +29.5
constraints +29.4
fibheaps +26.3
fulsom +19.3
gc bench +34.6
happy +36.9
lcss +21.7
power +25.9
spellcheck +28.9
Min +19.3
Max +36.9
Geometric Mean +27.9

Figure 4. Increase in GC time due to atomic evacuation

By default, GHC uses two generations, two steps in the youngest
generation, a fixed-size nursery of 0.5MB, and increases the size
of the old generation as necessary. This configuration is designed
to be cache-friendly and memory-frugal, but we found it to be
suboptimal for parallel GC: the nursery is too small to make it
worthwhile starting up multiple threads for the young-generation
collections (but see Section 7.2). So instead of using a fixed-size
nursery and a variable sized old-generation, we gave each program
a fixed-size total heap. In this configuration the GC allocates all
unused memory to the nursery, and hence will collect the nursery
less frequently.

We set the size of the heap given each program to be the same
as the maximum heap size attained when the program was run in
the default (variable-sized heap) configuration. Typically this value
is about 3 times the maximum amount of live data encountered in
any GC.

It is worth noting that strange artifacts abound when measuring
GC. If a change to the collector causes a GC to take place at a
different time, this can affect the cost of GC dramatically. The
volume of live data can change significantly over a short period
of time, for example when a large data structure suddenly becomes
unreachable. To minimize these effects in our measurements, we
aim to always collect at the same time, by measuring the amount of
live data and scheduling collections accurately.

We made all our measurements on a machine with dual quad-
core Intel Xeon processors, for a total of 8 cores. The OS was
Windows Server x64, but we compiled and ran 32-bit binaries.

5.1 Locking overhead
Figure 4 compares our best sequential GC with the parallel GC ex-
ecuting on a single processor, and therefore shows the fixed over-
head of doing GC in parallel. (Unfortunately we did not collect
results for the GHC benchmark, but have no reason to believe they
would differ dramatically from the others shown). The majority of
this overhead comes from the per-object locking that is necessary
to prevent two processors from evacuating the same object (Sec-
tion 3.1).

The overhead is about 30%, which means the parallel GC must
achieve at least a speedup of 1.3 just to beat the single-threaded
GC.

5.2 Speedup
Figure 5 shows the speedup obtained by our parallel GC, that is, the
ratio of the wall-clock time spent in GC when using a single CPU
to the wall-clock time spent in GC when using N CPUs, for values
of N between 1 and 8.

The baseline we’re using here is the parallel version of the GC
with a single thread; that is, the per-object locking measured in the
previous section is included.
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Figure 5. Speedup on various benchmarks

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Balance
Factor

Processors

perfect balance (8)

constraints (7.77)

gc_bench (7.69)

fulsom (7.59)

lcss (7.50)

power (6.05)

circsim (5.99)

ghc (4.60)

spellcheck (3.96)

happy (3.88)

fibheaps (3.48)

Figure 6. Work balance

The amount of speedup varies significantly between programs.
We aim to qualify the reasons for these differences in some of the
measurements made in the following sections.

5.3 Measuring work-imbalance
If the work is divided unevenly between threads, then it is not possi-
ble to achieve the maximum speedup. Measuring work imbalance
is therefore useful, because it gives us some insight into whether
a less-than-perfect speedup is due to an uneven work distribution
or to other factors. The converse doesn’t hold: if we have perfect
work distribution it doesn’t necessarily imply perfect wall-clock
speedup. For instance, the threads might be running in sequence,
even though they are each doing the same amount of work.

In this section we quantify the work imbalance, and measure
it for our benchmarks. An approximation to the amount of work
done by a GC thread is the number of bytes it copies. This is an
approximation because there are operations that involve copying
no bytes: scanning a pointer to an already-evacuated object, for
example. Still, we believe it is a reasonable approximation.

We define the work balance factor for a single GC to be
Ctot/Cmax where Ctot is the total number of bytes copied by all
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Figure 7. Varying the chunk size

threads, and Cmax is the maximum number of bytes copied by any
one thread. Perfect balance is N (the number of GC threads), per-
fect imbalance is 1. This figure is the maximum real speedup we
could expect, given the degree to which the work was distributed
across the threads.

Generalising this to multiple GCs is done by treating all the GCs
together as a single large GC - that is, we take the sum of Ctot for
all GCs and divide by the sum of Cmax for all GCs.

Figure 6 shows the measured work balance factor for our bench-
marks, in the same format as Figure 5 for comparison. The results
are broadly consistent with the speedup results from Figure 5: the
top 3 and the bottom 4 programs are the same in both graphs. Work
imbalance is clearly an issue affecting the wall-clock speedup, al-
though it is not the only issue, since even when we get near-perfect
work balance (e.g. constraints, 7.7 on 8 processors), the speedup
we see is still only 4.5.

Work imbalance may be caused by two things:

• Failure of our algorithm to balance the available work
• Lack of actual parallelism in the heap: for example when the

heap consists mainly of a single linked list.

When the work is balanced evenly, a lack of speedup could be
caused by contention for shared resources, or by threads being idle
(that is, the work is balanced but still serialised).

Gaining more insight into these results is planned for future
work. The results we have presented are our current best effort,
after identifying and fixing various instances of these problems (see
for instance Section 3.7), but there is certainly more that can be
done.

5.4 Varying the chunk size
The collector has a “minimum chunk size”, which is the smallest
amount of work it will push to the global Pending Block Set. When
the Pending Block Set has plenty of work on it, we allow the
allocation blocks to grow larger than the minimum size, in order to
reduce the overhead of modifying the Pending Block Set too often.

Our default minimum chunk size, used to get the results pre-
sented so far, was 128 words (with a block size of 1024 words). The
results for our benchmarks on 8 processors using different chunk
sizes are given in Figure 7. The default chunk size of 128 words
seems to be something of a sweet spot, although there is a little
more parallelism to be had in fibheaps and constraints when
using a 32-word chunk size.



5.5 Lock contention
There are various mutexes in the parallel garbage collector, which
we implement as simple spinlocks. The spinlocks are:

• The block allocator (one global lock)
• The remembered sets (one for each generation)
• The Pending Block Sets (one for each step)
• The large-object lists (one for each step)
• The per-object evacuation lock

The runtime system counts how many times each of these spin-
locks is found to be contended, bumping a counter each time the
requestor spins. We found very little contention for most locks. In
particular, it is extremely rare that two threads attempt to evacuate
the same object simultaneously: the per-object evacuation lock typ-
ically counts less than 10 spins per second during GC. This makes
it all the more painful that this locking is so expensive, and it is why
we plan to investigate relaxing this locking for immutable objects
(Section 7).

There was significant contention for the block allocator, espe-
cially in the programs that use a large heap. To reduce this con-
tention we did two things:

• We rewrote the block allocator to maintain its free list more
efficiently.

• We allocate multiple blocks at a time, and keep the spare ones
in the thread’s Partly Free List (Section 3.6). At the end of GC
any unused free blocks are returned to the block allocator.

5.6 Fragmentation
A block-structured heap will necessarily waste some memory at the
end of each block. This arises when

• An object to be evacuated is too large to fit in the current block,
so a few words are often lost at the end of a to-space block.

• The last to-space block to be allocated into will on average
be half-full, and there is one such block for each step of each
generation for each thread. These partially-full blocks will be
used for to-space during the next GC, however.

• When work is scarce (see Section 3.6), partially-full blocks are
exported to the pending block set. The GC tries to fill up any
partially-full blocks rather than allocating fresh empty blocks,
but it is possible that some partially-full blocks remain at the
end of GC. The GC will try to re-use them at the next GC if this
happens.

We measured the amount of space lost due to these factors, by
comparing the actual amount of live data to the number of blocks
allocated at the end of each GC. The runtime tracks the maximum
amount of fragmentation at any one time over the run of a program
and reports it at the end; we found that in all our benchmarks,
the fragmentation was never more than 1% of the total memory
allocated by the runtime. To put this in perspective, remember that
copying GC wastes at least half the memory.

5.7 Eager Promotion
To our knowledge this is the first time the idea of eager promotion
has been presented, and it is startlingly effective in practice. Fig-
ure 8 shows the benefit of doing eager promotion (Section 4.1), in
the single-threaded GC. On average, eager promotion reduces the
time spent in garbage collection by 6.8%. One example (power)
went slower with eager promotion turned on - this program turns
out to be quite sensitive to small changes in the times at which GC
strikes, and this effect dominates.

Program ∆ GC time (%)
circsim -1.0
constraints -18.4
fibheaps -2.7
fulsom -14.8
gc bench -6.2
ghc -3.6
happy -14.2
lcss -15.6
power +36.6
spellcheck -17.4
Min -18.4
Max +36.6
Geometric Mean -6.8

Figure 8. Effect of adding eager promotion

5.8 Miscellany
Here we list a number of other techniques or modifications that we
tried, but have not made systematic measurements for.

• Varying the native block size used by the block allocator. In
practice this makes little difference to performance until the
block size gets too small, and too large increases the amount
of fragmentation. The current default of 4kbytes is reasonable.

• When taking a block from the Pending Block Set, do we take
the block most recently added to the set (LIFO), or the block
added first (FIFO)? Right now, we use FIFO, as we found it
increased parallelism slightly, although LIFO might be better
from a cache perspective. All other things being equal, it would
make sense to take blocks of work recently generated by the
current thread, in the hope that they would still be in the cache.
Another strategy we could try is to take a random block, on the
grounds that it would avoid accidentally hitting any worst-case
behaviour.

• Adding more generations and steps doesn’t help for these
benchmarks, although we have found in the past that adding
a generation is beneficial for very long-running programs.

• At one stage we used to have a separate to-space for objects
that do not need to be scavenged, because they have no pointer
fields (boxed integers and characters, for example). However,
the runtime system has statically pre-allocated copies of small
integers and characters, giving a limited form of hash-consing,
which meant that usually less than 1% of the dynamic heap
consisted of objects with no pointers. There was virtually no
benefit in practice from this optimisation, and it added some
complexity to the code, so it was discarded.

• We experimented with pre-fetching in the GC, with very limited
success. Pre-fetching to-space ahead of the allocation pointer is
easy, but gives no benefit on modern processors which tend to
spot sequential access and pre-fetch automatically. Pre-fetching
the scan block ahead of the scan pointer suffers from the same
problem. Pre-fetching fields of objects that will shortly be
scanned can be beneficial, but we found in practice that it was
extremely difficult and processor-dependent to tune the dis-
tance at which to prefetch. Currently, our GC does no explicit
prefetching.

6. Related work
There follows a survey of the related work in this area. Jones pro-
vides an introduction to classical sequential GC [JL96]. We focus
on tracing collectors based on exploring the heap by reachability
from root references. Moreover, we consider only parallel copy-
ing collectors, omitting those that use compaction or mark-sweep.



We also restrict our discussion to algorithms that are practical for
general-purpose use.

Halstead [RHH85] developed a parallel version of Baker’s in-
cremental semispace copying collector. During collection the heap
is logically partitioned into per-thread from-spaces and to-spaces.
Each thread traces objects from its own set of roots, copying them
into its own to-space. Fine-grained locking is used to synchro-
nize access to from-space objects, although Halstead reports that
such contention is very rare. As Halstead acknowledges, this ap-
proach can lead to work imbalance and to heap overflow. Halstead
makes heap overflow less likely by dividing to-spaces into 64K-
128K chunks which are allocated on demand.

Many researchers have explored how to avoid the work imbal-
ance problems in early parallel copying collectors. It’s impractical
to avoid work imbalance: the collector does not know ahead of time
which roots will lead to large data structures and which to small.
The main technique therefore is to dynamically re-balance work
from busy threads to idle threads.

Imai and Tick [IT93] developed the first parallel copying GC
algorithm with dynamic work balancing. They divide to-space into
blocks with each active GC thread having a “scan” block (of objects
that it is tracing from) and a “copy” block (into which it copies
objects it finds in from-space). If a thread fills its copy block then
it adds it to a shared work pool, allocates a fresh copy block, and
continues scanning. If a thread finishes its scan block then it fetches
a fresh block from the work-pool. The size of the blocks provides
a trade-off between the time spent synchronizing on the work-
pool and the potential work imbalance. Siegwart and Hirzel [SH06]
extend this approach to copy objects in hierarchical order.

Endo et al [ETY97] developed a parallel mark-sweep collector
based on Boehm-Demers-Weiser conservative GC. They use work-
stealing to avoid load-imbalance during the mark phase: GC threads
have individual work queues and if a thread’s own queue becomes
empty then it steals work from another’s. Endo et al manage work
at a finer granularity than Imai and Tick: they generally use per-
object work items, but also sub-divide large objects into 512-byte
chunks for tracing. They found fine-granularity work management
valuable because of large arrays in the scientific workloads that they
studied. They parallelise the sweep phase by over-partitioning the
heap into batches of blocks that are processed in parallel, meaning
that there are more batches than GC threads and that GC threads
dynamically claim new batches as they complete their work.

Flood et al [FDSZ01] developed a parallel semispace copy-
ing collector. As with Endo et al, they avoid work-imbalance by
per-object work-stealing. They parallelise root scanning by over-
partitioning the root set (including the card-based remembered set
in generational configurations). As with Imai and Tick, each GC
thread allocates into its own local memory buffer. Flood et al also
developed a parallel mark-compact collector which we do not dis-
cuss here.

Concurrent with Flood et al, Attanasio et al [ABCS01] devel-
oped a modular GC framework for Java on large symmetric mul-
tiprocessor machines executing server applications. Unlike Flood
et al, Attanasio et al’s copying collector performed load balancing
using work buffers of multiple pointers to objects. A global list is
maintained of full buffers ready to process. Attanasio reports that
this coarser mechanism scales as well as Flood et al’s fine-grained
design on the javac and SPECjbb benchmarks; as with Imai and
Tick’s design, the size of the buffers controls a trade-off between
synchronization costs and work imbalance.

Also concurrent with Flood et al, Cheng and Blelloch developed
a parallel copying collector using a shared stack of objects waiting
to be traced [BC99, CB01]. Each GC thread periodically pushed
part of its work onto the shared stack and took work from the shared
stack when it exhausted its own work. The implementation of the

stack is simplified by a gated synchronization mechanism so that
pushes are never concurrent with pops.

Ben-Yitzhak et al [BYGK+02] augmented a parallel mark-
sweep collector with periodic clearing of a “evacuated area” (EA).
The basic idea is that if this is done sufficiently often then it pre-
vents fragmentation building up. The EA is chosen before the mark
phase and, during marking, references into the EA are identified.
After marking the objects in the EA are evacuated to new loca-
tions (parallelized by over-partitioning the EA) and the references
found during the mark phase are updated. In theory performance
may be harmed by a poor choice of EA (e.g. one that does not
reduce fragmentation because all the objects in it are dead) or by
workload imbalance when processing the EA. In practice the first
problem could be mitigated by better EA-selection algorithm and,
for modest numbers of threads, the impact of the second is not
significant.

This approach was later used in Barabash et al’s parallel frame-
work [BBYG+05]. Barabash et al also describe the “work packet”
abstraction they developed to manage the parallel marking phases.
As with Attanasio et al’s work buffers, this provides a way to batch
communication between GC threads. Each thread has one input
packet from which it is taking marking work and one output packet
into which it places work that it generates. These packets remain
distinct (unlike Imai and Tick’s chunks [IT93]) and are shared be-
tween threads only at a whole-packet granularity (unlike per-object
work stealing in Endo et al’s and Flood et al’s work). Barabash et
al report that this approach makes termination detection easy (all
the packets must be empty) and makes it easy to add or remove GC
threads (because the shared pool’s implementation is oblivious to
the number of participants).

Petrank and Kolodner [PK04] observe how existing parallel
copying collectors allocated objects into per-thread chunks, raising
the possibility of a fragmentation of to-space. They showed how
this could be avoided by “delayed allocation” of to-space copies of
objects: GC threads form batches of proposed to-space allocations
which are then performed by a single CAS on a shared allocation
pointer. This guarantees that there is no to-space fragmentation
while avoiding per-allocation CAS operations. In many systems the
impact of this form of fragmentation is small because the number
of chunks with left-over space is low.

There are thus two kinds of dynamic re-balancing: fine-grained
schemes like Endo et al [ETY97] and Flood et al [FDSZ01]
which work at a per-object granularity, and batching schemes like
Imai and Tick [IT93], Attanasio et al [ABCS01] and Barabash et
al [BBYG+05] which group work into blocks or packets. Both ap-
proaches have their advantages. Fine-grained schemes reduce the
latency between one thread needing work and it being made avail-
able and, as Flood et al argue, the synchronization overhead can
be mitigated by carefully designed work-stealing systems. Block-
based schemes may make termination decisions easier (particularly
if available work is placed in a single shared pool) and make it eas-
ier to express different traversal policies by changing how blocks
are selected from the pool (as Siegwart and Hirzel’s work illus-
trated [SH06]).

We attempt to combine the best of these approaches. In partic-
ular we try to keep the latency in work distribution low by using
producing incomplete blocks if there are idle threads. Furthermore,
as with Imai and Tick’s [IT93] and Siegwart and Hirzel’s [SH06]
work, we represent our work items by areas of to-space, avoiding
the need to reify them in a separate queue or packet structure.

A number of collectors have exploited the immutability of most
data in functional languages. Doligez and Leroy’s concurrent col-
lector for ML [DL93] uses per-thread private heaps and allows mul-
tiple threads to collect their own private heaps in parallel. They sim-
plify this by preserving an invariant that there are no inter-private-



heap references and no references from a common shared heap into
any thread’s private heap: the new referents of mutable objects are
copied into the shared heap, and mutable objects themselves are
allocated in the shared heap. This exploits the fact that in ML (as
in Haskell) most data is immutable. Huelsbergen and Larus’ con-
current copying collector [HL93] also exploits the immutability of
data in ML: immutable data can be copied in parallel with concur-
rent accesses by the mutator.

7. Conclusion and further work
The advent of widespread multi-core processors offers an attractive
opportunity to reduce the costs of automatic memory management
with zero programmer intervention. The opportunity is somewhat
tricky to exploit, but it can be done, and we have demonstrated
real wall-clock benefits achieved by our algorithm. Moreover, we
have made progress toward explaining the lack of perfect speedup
by measuring the load imbalance in the GC and showing that this
correlates well with the wall-clock speedup.

There are two particular directions in which we would like to
develop our collector.

7.1 Reducing per-object synchronisation
As noted in Section 3.1, a GC thread uses an atomic CAS instruc-
tion to gain exclusive access to a from-space heap object. The cost
of atomicity here is high: 20-30% (Section 5.1), and we would like
to reduce it.

Many heap objects in a functional language are immutable,
and the language does not support pointer-equality. If such an
immutable objects is reachable via two different pointers, it is
therefore semantically acceptable to copy the object twice into to-
space. Sharing is lost, and the heap size may increase slightly, but
the mutator can see no difference.

So the idea is simple: for immutable objects, we avoid using
atomic instructions to claim the object, and accept the small possi-
bility that the object may be copied more than once into to-space.
We know that contention for individual objects happens very rarely
in the GC (Section 5.5), so we expect the amount of accidental du-
plication to be negligible in practice.

7.2 Privatising minor collections
A clear shortcoming of the system we have described is that
all garbage collection is global: all the processors stop, agree to
garbage collect, perform garbage collection, and resume mutation.
It would be much better if a mutator thread could perform local
garbage collection on its private heap without any interaction with
other threads whatsoever. We plan to implement such a scheme,
very much along the lines described by Doligez and Leroy [DL93].
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