
Non-stop Haskell

A.M. Cheadle & A.J. Field

Imperial College, London

ajf@doc.ic.ac.uk

amc4@doc.ic.ac.uk

S. Marlow & S.L. Peyton Jones

Microsoft Research, Cambridge

simonmmar@microsoft.com

simonmpj@microsoft.com

R.L. While

The University of Western Australia, Perth

lyndon@cs.uwa.edu.au

Abstract

We describe an eÆcient technique for incorporating Baker's
incremental garbage collection algorithm into the Spineless
Tagless G-machine on stock hardware. This algorithm elim-
inates the stop/go execution associated with bulk copying
collection algorithms, allowing the system to place an upper
bound on the pauses due to garbage collection. The tech-
nique exploits the fact that objects are always accessed by
jumping to code rather than being explicitly dereferenced. It
works by modifying the entry code-pointer when an object
is in the transient state of being evacuated but not scav-
enged. An attempt to enter it from the mutator causes the
object to \self-scavenge" transparently before resetting its
entry code pointer. We describe an implementation of the
scheme in v4.01 of the Glasgow Haskell Compiler and re-
port performance results obtained by executing a range of
applications. These experiments show that the read barrier
can be implemented in dynamic dispatching systems such as
the STG-machine with very short mutator pause times and
with negligible overhead on execution time.

1 Introduction

A signi�cant drawback of automatic garbage collection is the
detrimental e�ect it can have on the responsiveness of a pro-
gram. While the system is collecting garbage it is unavail-
able to user programs for useful work, and this can cause a
program to appear `dead' for extended periods of time. This
problem is caused largely by the fact that garbage collection
algorithms typically collect all of the system's free store in
one go, an operation that takes time at least proportional
to the number of live objects in the system.

This \unbounded pause" problem has been exacerbated by
the tendency towards larger memories and it has discour-
aged the use of garbage-collected programming languages
for many interactive or real-time applications. In the for-
mer, for example, the acid test is the responsiveness of the

system when performing intensive I/O, e.g. when tracking
the mouse or performing continuous real-time animation.

An algorithm that avoids this problem, at least in the con-
text of copying collection schemes [6], is Baker's incremen-
tal algorithm [3] (an excellent general overview is also given
in [15]). Baker's scheme interleaves program execution with
small incremental copying phases, causing the program to
pause periodically for short periods rather than stopping
completely to perform the copy in one go.

The major problem with the implementation of Baker's
scheme, at least in software, is the very high cost associ-
ated with the read barrier, which is a check required at each
pointer load to ensure that the referenced object has been
copied if it needs to be.

In this paper we present a portable software technique for
incremental garbage collection in language implementations
that already make use of dynamic dispatch. We make the
following contributions:

� We suggest a simple technique that exploits an under-
lying dynamic-dispatch mechanism to implement the
read barrier (Section 3). The idea is that we \hijack"
the method table of an object that must be scavenged
before being used, thereby implementing a simple per-
object read barrier. This means that there are no
read barrier overheads associated with object references
when either i. the garbage collector is o�, or ii. the
garbage collector is on and the object has already been
scavenged.

� We extend the idea to treat stack activation records
in a similar way, so that stacks, too, can be collected
incrementally (Section 3.2).

� To evaluate our technique we have developed a pro-
totype implementation for the Glasgow Haskell Com-
piler (Section 4). Experiments with this implementa-
tion show that the average overhead on program execu-
tion time is less than 4% for the benchmarks tested and
that sub-millisecond average pause times are achieved
in all cases (Section 5).

Our system is only useful where the bulk of all object ac-
cesses use dynamic dispatch { that is, the �elds of an object
are private, and used only by the object's methods. This is
so in GHC's implementation of lazy evaluation, and in some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICFP'00, Montreal, Canada.
Copyright 2000 ACM 1-58113-202-6/00/0009…$5.00.
ICFP'00,

257

Non-Stop Haskell

257

pure object-oriented systems. Certain static optimisations,
in which the target of a dispatch can be computed statically,
are no longer valid; we cannot quantify this loss in general,
but in GHC it is small (Section 4).

The GHC run-time system that we used has a bulk stop-and-
copy collection scheme rather than a generational scheme.
The scheme we describe can be implemented generationally
(see Section 7), but in this paper we focus on the more
straightforward bulk copying scheme for evaluation pur-
poses.

2 Background

2.1 Baker's Algorithm

The philosophy behind Baker's algorithm is to spread the
overhead of a garbage collection across the set of alloca-
tion requests issued by the user program (the mutator), in
essence performing a series of small collections rather than
one major collection.

New objects are allocated in to-space. When to-space be-
comes full, a
ip takes place: to-space becomes from-space,
and a few objects (the root set) are evacuated (copied) into
to-space. Each evacuated object must then be scavenged, a
process that simply evacuates any objects it points to. Ob-
jects that have been evacuated into to-space but have not
yet been scavenged form what is termed the collector queue.
When the collector queue is empty, all reachable data has
been copied into to-space.

The copying process thus involves two fundamental opera-
tions on heap objects:

Evacuation The object is copied from from-space into to-
space, leaving a forwarding address in the old copy and
returning the address of the new copy. The object is
placed on the collector queue, which holds objects in
to-space waiting to be scavenged.

Scavenging An object is scavenged by evacuating each
child object to which it points, overwriting the existing
child pointer with a pointer to the new location of the
child.

The garbage collector implements these two operations using
layout information that can be derived somehow from the
object itself (details vary).

In the incremental version of Baker's collector, scavenging
is carried out in piecemeal fashion. When the mutator tries
to allocate an object, the collector is given the opportunity
to scavenge a few more objects on the collector queue, be-
fore returning to the mutator. The number of objects traced
at each allocation (the mark-ratio) is set to ensure that the
garbage collection is completed before the free store is ex-
hausted again. An upper bound can then be placed on the
time taken for an allocation request to be serviced.

The read barrier maintains the following invariant, the read-
barrier invariant : every pointer manipulated by the mutator
points into to-space. If this invariant can be maintained,
then newly-allocated objects will contain to-space pointers
only and need not be scavenged. Similarly, there is no prob-
lem if the mutator writes to an existing object, even if the

latter has already been scavenged, because it can only store
a to-space pointer. In short, the mutator can operate un-
der the illusion that the garbage collection cycle happens
instantaneously.

How does the read barrier maintain the invariant? When-
ever the mutator wants to load a �eld from an object to
which it has a pointer, it must check whether the object has
been scavenged and, if not, arrange to scavenge it �rst. The
principal disadvantage of the scheme is the CPU overhead
of these checks. Three main approaches have been used to
implement the read-barrier.

In software This involves inserting extra instructions to
perform address range checks at each pointer-load in
the program. It carries a typical overhead of 40{50%
of the execution time of a program [22].

Using virtual-memory This approach uses the machine's
virtual memory protection mechanism to lock down ob-
solete copies of objects [1]. Any attempt to access such
an object causes a trap to the run-time system, the ob-
ject is traced, the lock is removed and the mutator is
resumed. The mechanism is operating system speci�c
and so is not portable. The overhead is very sensitive
to the trapping architecture of the system: an average
range is around 13{63% [22].

In hardware A small amount of extra hardware on a pro-
cessor enables pointer-loads to be checked in parallel
with normal execution [12]. Again a trap to the run-
time system occurs when the mutator trips over the
barrier. Typical overheads with this approach are 9{
11% [22] although in all but a few customized hardware
systems the option is simply not available.

A read-barrier implementation o�ers a potential advantage
to the system [7, 13]. With a read-barrier, objects are traced
by two di�erent mechanisms during a garbage collection.
\Active" objects are traced by the mutator when it attempts
to access them and trips over the barrier: \passive" (though
of course live) objects are traced by the garbage collector
itself when it is triggered by an allocation request. Thus ac-
tive objects are naturally distinguished from passive objects
and we can improve the dynamic locality of a program by
grouping them together. This can reduce the paging costs
of a program substantially, and can also improve its cache
performance. We do not evaluate this opportunity here.

2.2 The STG-machine

The STG machine [19, 16, 17] is a model for the compi-
lation of lazy functional languages. It is derived from the
G-machine [2, 14] and the Spineless G-machine [5].

In the STG-machine every program object is represented
as a closure. The �rst �eld of each closure is a pointer to
statically-allocated entry code, above which sits an info ta-
ble that contains static information relating to the object's
type, notably its layout. An example is shown in Figure 1 for
an object with four �elds, the �rst two of which are pointers
(pointers always precede non-pointers). The layout informa-
tion is used by the collector when evacuating or scavenging
the closure.

2258258

0: r

-

1: r

-

2: r

- heap pointers

3: imm. 4: imm.

4, 2

Other �elds

Entry code
...
...

Figure 1: The layout of a closure with four �elds,
the �rst two of which are pointers (the other two
are immediate values).

Some closures represent functions; their entry code is sim-
ply the code to execute when the function is called. Others
represent constructors, such as list cons cells. Their entry
code returns immediately with the returned value being the
original closure (the closure and the list cell are one and the
same). Some closures represent thunks (known by some as
\suspensions" or \futures"). When the value of a thunk is
demanded, the mutator simply enters the closure by jump-
ing to its entry-code without performing any test. When
the evaluation of the thunk is complete, the thunk is over-
written in-place with a new closure representing its value.
If the mutator tries to evaluate the thunk again, execution
will now land in the code for the value (i.e. return code),
instead of code to compute the value.1

The most important feature of the STG-machine for our
purposes is that a closure has some control over its own
operational behaviour, via its entry code pointer. This rep-
resentation of heap objects is quite typical in object-oriented
systems, except that the header word of an object typically
points to a static method table rather than to a single, dis-
tinguished method (our \entry code").

3 The New Scheme

In this section we introduce our new scheme. As in the orig-
inal Baker scheme, each time the mutator claims some space
from the heap the garbage collector is called to scavenge k
closures on the collector queue. k is called the mark-ratio
and it must be large enough to ensure that all of the live clo-
sures in from-space are evacuated and scavenged before to-
space is �lled up. Therefore, at each allocation request, the
mutator checks if there is a garbage collection in progress: if
there is, it arranges for k closures (on the collector queue) to
be scavenged. It must also arrange for the stacks (and other
pointers outside the heap) to be scavenged incrementally in
similar fashion.

The main idea is a cheap implementation of the read-barrier
invariant (Section 2.1), which states that the mutator sees
only to-space pointers. The STG machine spends most of
its time executing code generated from Haskell function def-
initions. This code executes in an immediate environment,
or activation consisting of (a) registers, (b) locations in the

1Note that some values are bigger than the closures that built
them. In these cases the closure is replaced with a pointer to the
value (an indirection).

function's stack frame, and (c) the �elds of the currently-
active closure (CAC). This is quite conventional. The CAC
is necessary to support �rst-class functions and thunks: it
contains the environment captured when the function or
thunk was allocated. (Object-oriented programmers call the
CAC the this pointer.) The STG machine captures a sepa-
rate
at (i.e. non-nested) environment in each such closure,
a design decision that turns out to make incremental garbage
collection much easier.

Since the mutator only accesses the current activation, we
can maintain the read-barrier invariant thus:

Ensure that all the �elds of the current activation
have been scavenged; that is, they point into to-
space

In operational terms, there are two major elements to im-
plementing this requirement.

� Before entering the code for a closure, we must �rst
scavenge the closure (Section 3.1).

� When a function returns to its caller, we must �rst
scavenge the caller's stack frame (Section 3.2).

3.1 Entering a Closure

The �rst thing that happens to a closure when it is entered
during a garbage collection is that it is evacuated and placed
on the queue of closures in to-space waiting to be scavenged.
At some subsequent time, the garbage collector scavenges
the closure. If the closure is entered between being evacu-
ated and being scavenged, there is a danger of from-space
references being propagated into to-space. We avoid this
by arranging for the closure to be scavenged if it is entered
while it is on the collector queue.

When a closure is evacuated, its info pointer is replaced by a
pointer to code that scavenges the closure before entering it.
In our prototype implementation the original info pointer is
remembered in an extra header word | Word {1 | in the
evacuated copy of the closure itself, as illustrated in Figure 2.

Note that there are several ways of avoiding this info pointer
copy. We could instead have used part of the original copy
of the closure in from-space to store the info pointer, but
this would require all objects to have a minimum size of
three words, which is not guaranteed in v4.01 of GHC. An
alternative is to make each info table contain both entry
code and a copy of the self-scavenging code, both with as-
sociated layout information. The info-pointer of a closure
can then be switched between the entry code and the self-
scavenging code transparently from the point of view of the
mutator. This is an attractive option but requires a substan-
tial increase in the size of each static info table. From the
point of view of a prototype, the info pointer copy also turns
out to be useful should a closure be updated before being
scavenged: the scavenger can use the original info pointer
to determine the size of the original closure and hence how
far to skip after the closure has been scavenged (see Sec-
tion 3.3). So, although maintaining the copy is not ideal
in the longer term it does have the short-term advantage
of simplifying the prototype implementation. Various im-
provements to the current prototype, including the removal
of the extra word, are discussed in Section 7.

3259259

-1: r

�

0: r

-

1: r

-

2: r

- heap pointers

3: imm. 4: imm.

Self-scav code
...
...

4, 2

Other �elds

Entry code
...
...

Figure 2: The layout of a closure with two pointers and two immediate values after
it has been evacuated under the incremental regime.

After evacuation, there are two possibilities: the closure
will either be entered by the mutator or scavenged by the
garbage collector.

� If the closure is entered by the mutator �rst, the muta-
tor executes Self-scav code. This code uses the layout
info accessed via Word {1 to scavenge the closure, re-
stores the original info pointer to Word 0, and then en-
ters the closure as it originally expected. The garbage
collector will eventually reach the closure, but as Word
0 no longer points to Self-scav code, it knows that the
closure has already been scavenged, so it does nothing.

� If the closure is reached by the garbage collector �rst,
the garbage collector scavenges the closure, again using
the layout information accessed via Word {1. It also
copies the original info pointer back to Word 0, so that
if the closure is eventually entered, entry occurs in the
normal way.

In e�ect, the two segments of scavenging code co-operate to
guarantee that the closure is scavenged exactly once before
it is entered.

Note that Word {1 plays no role outside the garbage col-
lection: new objects are allocated in a di�erent region of
memory to from-space and do not require the extra word.
The space overhead therefore depends on the proportion of
closures that are alive at a garbage collection, known as the
residency of the system. However, this overhead does not
require the heap to be any larger. For the same heap size, it
means that garbage collection is performed more often; this
is automatically factored into the timings.

3.2 Returning to a Closure

The second thing we must ensure is that the active stack
frame is completely scavenged. One way to achieve this
is to completely scavenge the stack at a GC
ip, but this
leads to an unbounded pause, especially since GHC supports
concurrency, so there may be many stacks.

An alternative is to view the stack as a sequence of closures.
The stack grows toward lower addresses, so each return ad-
dress sits immediately below (in address terms) the stack
frame to which it corresponds. In fact GHC makes each
return address look exactly like an info pointer, so stack
frames really do have the same layout as heap objects.

Returning to the previous stack frame is very like entering a
closure, and we could use the same technique to scavenge the
stack frame incrementally as we do for closures. However,
stack frames are contiguous, so the \Word {1" trick does
not work so well. Instead, we adopted a compromise. Inter-
spersed among the regular stack frames are update frames,
whose role is to update a thunk with the value being re-
turned. These update frames have a �xed return address.
The compromise is this: we scavenge all the stack frames
between one update frame and the one below, replacing the
return adddress in the latter with a self-scavenging return
address. This self-scavenging code scavenges the next group
of frames, before jumping to the normal, �xed, update code.
Since update frames can, in principle, be far apart, pause
times can be long; but this case is rare. The basic idea is
illustrated in Figure 3.

At the start of a garbage collection, we scavenge each stack
down to the topmost update frame, whose return address we
replace with a self-scavenging code pointer. After that, the
stack is scavenged incrementally, either by the background
collector, or when the stack retreats to an un-scavenged
update frame. The mutator and the collector maintain a
pointer to the highest unscavenged stack frame so that each
knows how far the scavenging has progressed. Thus the mu-
tator and the collector co-operate in the scavenging of the
stack, without the possibility of the collector encountering
a frame that has already been scavenged by the mutator.

3.3 Updates

When garbage collection is performed incrementally, it is
possible for a thunk to be updated between being evacuated
and being reached by the linear scavenging process. This
could cause a problem if the updated closure is smaller than
the original: when the linear scan eventually encounters the
closure and attempts to skip over it to the next closure it
will not skip far enough and will interpret the dead space
at the end of the previous closure as the start of the next.
However, the collector can determine that the closure has
already been scavenged because its info pointer no longer
points at Self-scav code.

The problem is therefore avoided by using the original layout
information which has been saved at Word {1.

4260260

1: scavenged

2r - scav; mod 3r; update; return

2: unscavenged

3r - update; return

3: unscavenged

?

2: scavenged

3r - scav; mod 4r; update; return

3: unscavenged

?

Figure 3: Before and after returning to the caller of group 2. Group 2 has been
scavenged and the code-pointer in group 3 has been modi�ed.

4 Implementation

We have constructed a prototype implementation of the
scheme on top of GHC v4.01. The run-time system is quite
complex so we shall not attempt to give details. Some points
are worth noting, however:

� GHC v4.01 uses a two-level storage allocation pol-
icy [18]. The central storage manager maintains a free-
list of 4KB-blocks of memory. When the mutator en-
counters an allocation request it obtains a block from
the storage manager and chains it onto the heap. The
mutator then allocates individual closures within that
block until it is exhausted, at which time it obtains a
new block. This continues up to some speci�ed max-
imum number of blocks. The advantages of using a
block allocated scheme are that areas of memory used
by the system need not be contiguous; blocks that are
freed during a collection become available for immedi-
ate reuse. Also, new objects are allocated to a separate
area (the nursery) from those being evacuated, so the
scavenger never encounters them.

� The block-allocation scheme makes it easy for the stor-
age manager to vary the size of to-space at run-time.
The manager tries to keep the residency (how much
heap is reachable, sampled at the previous garbage col-
lection) at about 33%. It gets more memory from the
operating system to achieve this, up to a settable max-
imum. However, it has a default minimum heap size of
256KB, so for small live data sets the actual residency
can be very small.

� Some of GHC's object types are always evaluated at
construction, and thus are never evaluated lazily; they
are never updated or entered. These are called un-
pointed objects, and include primitive arrays and mu-
table variables. The lack of entry code in unpointed
objects means that we cannot use the self-scavenging
scheme to collect them incrementally. They are there-
fore scavenged immediately after evacuation (eager
scavenging). This can introduce longer pause times.
However, a large object, such as a big array, gets a stor-
age block to itself, so evacuation does not require it to

be copied, and hence takes constant time. An alterna-
tive would be to implement a Baker-style read-barrier
in all the access functions associated with unpointed
objects.

� The fact that all dispatching must be dynamic in order
for the scheme to work means that some compiler op-
timisations have to be turned o�. For example, when
entering a dynamic function closure which has a known
info table we can jump straight to the entry code rather
than indirect via the info pointer in the closure. To ex-
ploit our incremental garbage collection scheme these
short-cuts must be forbidden for otherwise a scaveng-
ing code pointer planted in the object during garbage
collection might be missed. This constitutes an addi-
tional \cost", although for GHC 4.01 the optimisation
actually yields very small improvements (less than 2%
on the benchmarks considered below).

The nature of the block allocator in GHC enables the in-
cremental scheme to be supported at two alternative levels.
In the traditional Baker scheme, a scavenging phase occurs
at each new heap allocation. We can do the same here, al-
though we remark that a single allocation in GHC typically
delivers a `chunk' of memory that can satisfy multiple lower-
level allocations. We refer to this as EA (scavenge at Every
Allocation). The alternative, which turns out to be bene�-
cial for a number of reasons, is to scavenge at each 4KB block
allocation. This increases the grain of each scavenge phase
so that the impact of keeping the scavenger going during
mutation is reduced. Also, we can tune the block size if nec-
essary in order to reduce, or increase, the pause time. This
alternative scheme is called EB (scavenge at Every Block
allocation).

5 Experiments

In order to evaluate the new scheme, and to compare it with
stop-and-copy and Baker, we have tested it with six applica-
tions taken from the no�b test suite [20] and an additional
contrived benchmark called ref designed to explore some of
the extreme cases of heap usage.

5261261

We remark that none of the no�b benchmarks requires real-
time response. The purpose of the experiments was to get
a feel for both the average and extreme performance over-
heads incurred by the new scheme in relation to stop-and-
copy for a representative cross section of applications. The
bencharks we selected were chosen arbitrarily with no pre-
conception about the applications' expected behaviour us-
ing either scheme. The only criterion was that the applica-
tion should be able to run to completion without invoking
a garbage collection for a suitably chosen set of parameters
and initial heap allocation. This was to enable the actual
garbage collection and mean pause times to be determined
accurately when the garbage collector is turned on.

We ran each application in two con�gurations: one with
a heap large enough for the application to complete with-
out causing a garbage collection (typically around 110Mb),
and one with a smaller initial heap (256kB). It is worth
noting that the execution time of the application must be
controlled such that the total allocation does not exceed the
larger heap value (which would result in a garbage collec-
tion). The value is constrained to just below the amount of
memory in the benchmark machine. With pro�ling turned
o� the di�erence between the two execution times tells us
the total cost of garbage collection. For the new scheme
the application was �rst executed with pro�ling turned on2

in order to determine the total number of mutator pauses
and the heap allocation rate in bytes/s. The timings taken
from runs without pro�ling were used to determine the mean
pause time. All experiments were run on a Pentium-II/350
with 128MB RAM running RedHat Linux 6.0.

We ran each application with four garbage collection algo-
rithms: stop-and-copy (with all optimisations turned on), a
traditional implementation of Baker with a software read-
barrier, and the two versions of the new scheme, EA and
EB. The Baker implementation was set to scavenge at each
block allocation, as per EB. In each case the mark-ratio was
2 for the runs of EA and 2048 for the runs of EB. Note that
the smallest initial heap size is, by default, 256KB.

5.1 Overheads

In keeping with the basic Baker algorithm, the current
implementation of the allocator tests whether there is a
garbage collection in progress in order to decide whether
it needs to do some scavenging. This involves testing a run-
time
ag called gc_on each time an area of free space is
requested by the mutator. (Note that it is possible to avoid
this test by arranging for the garbage collector to be per-
manently switched on, as described in Section 7, but we
retain it here to enable a more direct comparison with the
traditional Baker scheme.) The gc_on test introduces an
overhead on each allocation, the cost of which depends on
the granularity of the garbage collector, i.e. how often it
performs the test.

There are three time overheads on garbage collection itself:
(i) the cost of adjusting the info pointer of each closure dur-
ing evacuation and scavenging (ii) the cost of adjusting the
code pointer in each stack frame that is active during the
garbage collection, and (iii) the cost of counting closures as

2We found that pro�ling code signi�cantly a�ected the execution
times in the incremental scheme.

contrived
= if length x == 0

then [0]
else if f [1..run] == 0

then x
else []

where
run = ...
work = ...
copy = ...
x = take copy [1..]
f [] = 1
f (x : xs) = if g x work

then 1
else f xs

g a b = if b == 0
then False
else g a (b-1)

Figure 4: The contrived benchmark code

they are scavenged (this overhead can be eliminated if the
mark-ratio is hard-coded, e.g. to 1).

6 Results

The performance results reported are based upon the aver-
age of a number of identical executions of each application.
This was typically between 5 and 10 runs, suÆcient at least
to keep the 90% con�dence interval for the mean execution
time within 1% of the mean.

6.1 Contrived Benchmarks

To begin with it is instructive to discuss the results for a
contrived benchmark called ref as we can control three of
the key parameters which a�ect application behaviour. The
code for ref is shown in Figure 4. It contains a top-level
function which �rst computes a list x of length copy and then
recurses over a second list of length run whilst holding on to
the �rst (by virtue of the �nal result being dependent on x).
In each step of the recursion a tail-recursive function that
performs no heap allocation is called work times. copy thus
controls the amount of live heap data which has to be copied
at each garbage collection; work controls the amount of work
done between allocations and hence controls the allocation
rate (in bytes/s) and run controls the length of the run and
hence the number of garbage collections that need to be
performed. The results reported here were undertaken with
the EB scheme, i.e. the self-scavenging scheme with routine
scavenging at each block allocation, although similar results
are observed with EA.

By setting work=copy=1 we obtain a program with a very
high allocation rate (around 110MB/s) and a very small
residency (around 0.1% of the available heap). This means
that most of the overhead seen in the new scheme is incurred
by the gc_on test. We �nd that the overhead is around
21% in this case. To investigate this further, the benchmark
was re-run with a 110MB heap which for loop = 3� 106 is
suÆcient to avoid a garbage collection. We were then able to
safely turn o� the gc_on test in the new scheme. We found

6262262

that this reduced the overhead to just over 2%. Indeed, a
similar experiment in which the gc_on test was redundantly
added to the stop/copy scheme with the garbage collector
turned on again brought the two execution times to within
2% of one another.

We next increased copy in order to increase the heap resi-
dency and so measure the e�ect of managing the info-pointer
copies in to-space. The e�ect is quite subtle: as copy in-
creases the allocation rate drops and the residency increases.
Proportionally less time is now spent allocating fresh heap
space, so the overall e�ect of the gc_on test is reduced. If we
set copy=50,000 the residency remains at around the target
value of 33%; the allocation rate drops to around 90MB/s
and as a result the overhead reduces to 5.6%. Note that
if copy is substantially increased the maximum heap size
is approached resulting in the residency creeping towards
100%. At this point the extra to-space word has the e�ect
of reducing the time between garbage collections, compared
with stop-and-copy, and we �nd that the overhead swings
the other way: as copy approaches the maximum value that
can be handled by the memory manager the overheads in-
crease by virtue of an increase in the number of garbage
collections.

Finally, as work is increased, more work is performed be-
tween allocations and so the allocation rate is reduced. With
copy=50,000 as above, increasing work further reduces the
overhead, as is expected. For work=100 the allocation rate
drops to around 16MB/s and the overhead falls to around
1.9%. Note that the residency is una�ected by the value of
work.

These experiments provide some useful insights into the be-
haviour of the various collectors in extreme cases and also to
the observed performance of some of the nofib benchmarks
which follow. However, the interactions between the applica-
tion and the block allocation scheme results in many subtle
performance anomalies in both directions: the observations
cannot be reliably used as a model of garbage collection per-
formance but they can suggest the correct qualitative trend
in many cases.

6.2 Experiments with no�b

The results obtained from our experiments with six of the
nofib benchmarks are summarised in Figures 1 { 6. Recall
that the parameter(s) in each case were chosen to allow the
application to complete without garbage collection using a
110MB heap.

The runs of EB for these problem sizes show less than a
6% average overhead relative to the standard stop-and-copy
algorithm, but with substantially smaller pause times, typ-
ically much less than 1ms. The mean pause times are, on
average, approximately 360 times higher for stop-and-copy
than for EB. Technically, we are interested in the maximum
pause time (rather than the average), but this is too small
to make reasonable measurements with the pro�ling tools
that were available. This is discussed in Section 7.

The runs for EA show signi�cantly shorter pause times, of
the order of 1�s (approximately 18000 times shorter than
stop-and-copy), but with larger overheads (an average of
15%), due primarily to the cost of the gc_on test at each
allocation.

The highest EB overhead (22%) is for primes 1500. The
resident (live) data is quite small in this case and the nurs-
ery never exceeds the 256KB minimum allocation. The res-
idency is around 24% and the allocation rate is approxi-
mately 40MB/s. In an e�ort to explain the high overhead
we ran ref with parameters which matched quite closely the
residency and allocation rate of primes 1500 (copy=3000,
work=25). With these parameters ref showed a 21% over-
head for EB when compared with stop-and-copy. This is
very similar to that observed in primes 1500. As the prob-
lem size increases the amount of live data and the res-
idency (as a %) both increase. Our earlier experiments
with ref suggest that the overhead should drop. Indeed,
for primes 6000 (see below) the live data averages around
220KB and the residency increases to around 30% with the
measured overhead for EB reduced to just under 2%. By set-
ting work and copy to approximate this behaviour the mea-
sured overhead for ref also drops signi�cantly (to around
5%). Qualitatively the relative performance moves in the
right direction but we stress that making accurate quanti-
tative predictions in general proves to be very hard.

Remark: In these benchmarks the stop-and-copy collec-
tor actually performs very well in terms of mean pause time;
the longest mean pause time recorded in these experiments
was just 117ms (pic). However, it is very easy to construct
applications with substantially longer pause times. For ex-
ample with work=1, copy=2.5M in ref the mean pause time
is around 1.6 seconds.

6.2.1 Longer Runs

To conclude, we executed each of the nofib applications
with larger problem sizes than could be accommodated in
the above experiments. These are summarised in Figure 7
which also shows the arithmetic and geometric means of the
overheads of each scheme compared to stop-and-copy. Com-
pared with the earlier experiments we �nd that the overhead
for two of the applications increases slightly with the prob-
lem size (pic and circ), three decrease (anna, primes and
wave4main) and one stays approximately the same (queens).

We can understand some of these trends from experience
with ref. For example, an analysis of circ shows that with
signi�cantly larger problem sizes, the maximum heap size
is being reached. This is analogous to the situation ear-
lier when we tried to increase copy in ref which lead to
an increase in overhead. On the other hand, in wave4main,
for example, the amount of live data increases more slowly
and the allocation rate drops compared to the earlier prob-
lem size; this accounts for the slight drop in overhead. The
results for anna are somewhat anomalous for Baker (308%
overhead for preludelist). The allocation rate for this pro-
gram is relatively low (an average of just under 3MB/s) with
between 5 and 10MB allocated between each garbage collec-
tion. Existing heap objects are therefore being accessed at a
very high rate relative to the allocation of new ones, which
explains the very poor performance of the conventional read
barrier implementation. In the new scheme, there is no read
barrier overhead when the garbage collector is o�. This con-
versely explains the very small overhead seen with both the
EA and EB schemes.

7263263

Stop-and-copy Baker Self-scav (EA) Self-scav (EB)

Running time 110Mb (s) 2.03 3.20 2.31 2.14

Running time 256KB (s) 4.26 5.33 (+25%) 4.59 (+8%) 4.19 (-2%)
GC time (s) 2.23 2.13 2.28 2.05
Number of pauses 19 | 1121409 5900
Average pause time (ms) 117 | 0.00203 0.347

Table 1: Results for pic 1500, a particle simulator.

Stop-and-copy Baker Self-scav (EA) Self-scav (EB)

Running time 110Mb (s) 4.37 7.41 4.59 4.36

Running time 256KB (s) 6.97 12.75 (+83%) 7.86 (+13%) 7.06 (+1%)
GC time (s) 2.60 5.34 3.27 2.70
Number of pauses 213 | 3182084 118556
Average pause time (ms) 12.2 | 0.00103 0.0228

Table 2: Results for anna ap ListofList, a frontier-based strictness analyser.

Stop-and-copy Baker Self-scav (EA) Self-scav (EB)

Running time 110Mb (s) 1.28 2.15 1.45 1.27

Running time 256KB (s) 3.89 5.51 (+42%) 4.61 (+19%) 4.16 (+7%)
GC time (s) 2.61 3.36 3.16 2.89
Number of pauses 61 | 1896616 23425
Average pause time (ms) 42.8 | 0.00167 0.123

Table 3: Results for circ 8 125, a simple circuit simulator.

Stop-and-copy Baker Self-scav (EA) Self-scav (EB)

Running time 110Mb (s) 1.65 2.59 1.66 1.64

Running time 256KB (s) 2.31 3.74 (+62%) 3.08 (+33%) 2.81 (+22%)
GC time (s) 0.66 1.15 1.42 1.17
Number of pauses 353 | 1214107 420491
Average pause time (ms) 1.87 | 0.00117 0.00278

Table 4: Results for primes 1500. primes k returns the kth prime number using the
Sieve of Eratosthenes.

Stop-and-copy Baker Self-scav (EA) Self-scav (EB)

Running time 110Mb (s) 1.94 3.97 2.13 2.02

Running time 256KB (s) 2.09 4.17 (+100%) 2.26 (+8%) 2.17 (+4%)
GC time (s) 0.15 0.20 0.13 0.15
Number of pauses 403 | 21106 403
Average pause time (ms) 0.372 | 0.00616 0.372

Table 5: Results for nqueens 11.

Stop-and-copy Baker Self-scav (EA) Self-scav (EB)

Running time 110Mb (s) 2.94 4.98 3.10 3.03

Running time 256KB (s) 5.62 8.24 (+47%) 6.12 (+9%) 5.74 (+2%)
GC time (s) 2.68 3.20 3.02 2.71
Number of pauses 139 | 1471723 37554
Average pause time (ms) 19.3 | 0.00205 0.0722

Table 6: Results for wave4main(2000), which predicts the tides in a rectangular estu-
ary of the North Sea.

8264264

Application Param(s) Stop-and-copy Baker Self-scav (EA) Self-scav (EB)

pic 8000 22.69 28.32 (+25%) 26.87 (+18%) 23.92 (+5.4%)
anna preludeList 152.06 468.3 (+308%) 159.9 (+5.1%) 153.7 (+1%)
circ 8 500 15.26 22.13 (+33%) 18.60 (+12%) 16.59 (+8.7%)
primes 6000 71.58 100.31 (+40%) 79.82 (+12%) 72.89 (+1.8%)
nqueens 12 12.47 25.24 (+102%) 13.97 (+12%) 13.00 (+4.2%)
wave4main 6000 17.58 25.33 (+44%) 18.95 (+7.8%) 17.66 (+0.4%)

Arith. mean +92.0% +11.2% +3.6%
Geom. mean +59.8% +10.36% +2.2%

Table 7: Results for larger runs

7 Discussion and Future Work

The results we have produced are extremely favourable and
the experiments we have performed show that the software
read barrier can be implemented in systems like the STG-
machine at very low cost. The overheads and mean pause
times we have reported are signi�cantly lower than for other
published schemes. However, we should make it clear that
the basis of the scheme is indirection and it is the fact that
indirection is already inherent in the STG-machine that the
read barrier can be achieved so cheaply. This has to be
borne in mind when making direct comparisons.

7.1 Further Improvements

7.1.1 Pause time distribution

Although we have been able to determine accurately the av-
erage pause time in each application, we have not been able
to determine the distribution because of the resolution of
the clock used to pro�le the code. We propose to access the
processor clock for pro�ling purposes in future implementa-
tions.

We expect the pause time to be almost constant in vast ma-
jority of cases since the mutator is resumed after a bounded
amount of copying has been done. The two aspects of
the current scheme for which there is no guaranteed upper
bound on pause time is the copying of unpointed objects
and stack scavenging.

For unpointed objects the evacuation cost is proportional
to the size of the object unless it is a large object; in this
case it will reside in its own block and can be evacuated
in constant time. The main cost is in the scavenging of
unpointed objects: an unpointed object may contain refer-
ences to other objects, including other unpointed objects.
The pause time in such cases may be very hard, or even im-
possible, to bound. An alternative approach is to implement
an explicit read barrier for each unpointed object primitive.
It will be interesting then to see whether we can obtain prov-
able upper bounds on the pause time along the lines of [4],
for example.

For reasons of simplicity incremental stack scavenging at
present operates only between update frames. With some
additional e�ort this can be adapted to work between arbi-
trary stack frames by hijacking all return addresses. This
requires separate self-scavenging info tables to be available
for all types of stack frame. Alternatively, we can build
a generic self-scavenging info table provided we retain an

additional copy of the return address in each stack frame.
This is analogous to what happens in the current treatment
of heap objects where we retain a copy of the old info ta-
ble pointer in evacuated objects. These issues are currently
being explored.

7.1.2 Continuous collection

As discussed earlier, each allocation in the current prototype
of both the Baker and new schemes performs a gc_on test to
determine whether a garbage collection is in progress. The
overhead is most noticeable in programs with very high al-
location rates and low residencies. The overhead of this test
can be eliminated altogether by ensuring that the garbage
collector is permanently switched on. This requires some
care in \booting" the memory manager to avoid continuous

ipping of the two heap spaces as the heap expands in the
early stages of mutator execution. Currently, garbage col-
lection terminates when there is nothing left to scavenge.
Rather than
ipping at this point the termination test can
be modi�ed so as to check additionally that a speci�ed min-
imum number of blocks have been allocated before e�ecting
the
ip. Fine tuning of this extra parameter requires exper-
imentation which we plan to undertake in the near future.

7.1.3 Space overheads

In the current implementation of the scheme an additional
copy of the original info pointer is maintained when evac-
uating an object. This simpli�es some aspects of the im-
plementation but it carries a (transient) space overhead on
all evacuated objects which can a�ect garbage collector per-
formance, both in maintaining the extra copy and invoking
more frequent garbage collections when the heap approaches
saturation. With some additional e�ort in compilation this
additional word can be eliminated, by changing the layout
of the existing info tables and adding extra �elds to store the
entry code and self-scavenging code addresses. A separate
self-scavenging info table is also required for each closure
type. This increases the total space required to store the
info tables but the overhead is static. An evaluation of the
increase in compiled program size which results will there-
fore need to be undertaken.

With this modi�cation in place, closure updates become
more complicated, speci�cally if an object in to-space is up-
dated with a value which is smaller than the original object.
This can be overcome by adding a dummy info table pointer
in the �rst word of the dead space at the end of the new ob-
ject which appears to the scavenger to be an object of the

9265265

same size as the dead space, but containing no pointer �elds.
Its e�ect is to cause the scavenger to skip automatically to
the next evacuated object in the collector queue when it en-
counters it. An implementation of this optimized scheme is
now under way.

7.2 Generational Schemes

A number of incremental schemes have been developed
based on generational storage structures in an attempt to
avoid the read barrier. In a generational scheme, the heap
is divided into two or more regions (generations), one hold-
ing freshly-allocated, but typically short-lived objects, and
the remainder holding older objects copied from previous
generations. Because the youngest generation typically con-
tains a small amount of live data the cost of evacuating the
data into an older region is usually small. These so-called
minor collections consequently result in small average pause
times.

The main challenge is in the incremental collection of ob-
jects in the older generations. As an example, the replicat-
ing collector of Nettles et al [21] allows the mutator to access
from-space whilst garbage collection is in progress. Correct-
ness is maintained by patching the mutator roots at the end
of a garbage collection and maintaining a mutation log of
all changes to from-space objects from the mutator. The
scheme yields a slowdown of less than 20% for the bench-
marks tested and less than 10% when restricted to major
collections. A similar approach is used in [11] for ML which
allows access to immutable objects in from-space.

Incremental schemes have also been developed for multi-
threaded systems, such as [10] which is targeted at Concur-
rent Caml. Here immutable objects are allocated in private
heaps and are copied to a shared heap during local garbage
collection within the associated thread. The shared heap is
collected by a separate thread operating Dijkstra's concur-
rent mark/sweep algrithm [9]. The scheme has the advan-
tage that the threads can perform minor collections indepen-
dently; however, mutable objects have to be allocated in the
shared heap which incurs an additional expense. The aver-
age pause time for minor collections is favourable, but there
is no guaranteed upper bound: the time is proportional to
the amount of live data in the private heaps.

The scheme we have proposed here can be easily adapted
to generational schemes and we are planning an implemen-
tation for Haskell in the near future. Unlike the existing
schemes, however, the fact that the read barrier comes at
such low cost means that all collections, including minor col-
lections, can, in principal, be performed incrementally. Al-
ternatively, minor collections could be performed on the con-
ventional `stop-the-world' basis with the incremental scheme
being used for the older generations.

7.3 Object-oriented Systems

The dynamic dispatch exploited in the STG machine is
something that is shared with almost all dynamic languages.
For example, the representation of closures that GHC uses
is strikingly similar to that used for objects in an implemen-
tation of a pure object oriented language such as Smalltalk.
An object points to a (static) method table, which contains

the addresses of each method associated with the object.
Method invocation is then performed by an indexed jump
through the table.

It would appear to be possible to adapt our incremental
scavenging technique for an object oriented language, by
temporarily replacing the method-table pointer in an ob-
ject with one that consisted of a vector of self-scavenging
methods. However, there is a price to pay: all methods
would have to be invoked via jump tables, essentially elim-
inating any performance bene�ts that might accrue from
knowing the exact type of an object, and therefore the exact
method code pointer to jump to. (Work on virtual inlining
of Java programs suggests that performance improvements
of up +26% [8] can be achieved.) Direct �eld access would
also be forbidden; all �elds would have to be accessed via
method calls. This imposes a signi�cant one-o� cost, but
it is a cost that may have multiple potential pay-o�s. For
example, an object system that supports proxies, in which a
local proxy stands in for a remote object, or perhaps simply
logs calls to a local object, would need a similar restriction.
Work is now under way to evaluate the performance trade-
o�s in the context of object-oriented systems.

8 Summary and Conclusions

We have described a scheme for incorporating incremen-
tal garbage collection into the STG-machine on stock hard-
ware. The scheme is based on the manipulation of the code-
pointers that are used to implement closure behaviour in the
STG-machine. Each closure creates its own, `personal' read-
barrier by manipulating its code-pointer during execution
and garbage collection. The technique derives its eÆciency
from the twin facts that these manipulations are very cheap
and that they are performed on a per-closure basis, rather
than a per-pointer-load basis, as in most implementations of
the read-barrier. Experiments suggest that the new scheme
carries a very low overhead, averaging less than 4% in ex-
ecution time for the benchmarks tested with average pause
time being sub-millisecond in all cases. This shows that in
systems which implement dynamic dispatching exclusively,
such as the STG-machine, a portable read barrier can be im-
plemented extremely cheaply leading to very short mutator
pauses with negligible overhead in execution time.

We have also found that the block-based memory allocator
of the GHC run-time system provides an excellent level of
granularity at which to perform incremental scavenging. By
scavenging on each block allocation we can keep the scav-
enger going for longer, at the expense of an increase in pause
time. This substantially reduces the overheads in the pro-
posed scheme and provides an additional mechanism (the
block size) by which to control the behaviour of the garbage
collector.

References

[1] A. Appel, J. Ellis, and K. Li. Real-time concurrent col-
lection on stock multiprocessors. In Conference on Pro-
gramming Language Design and Implementation, pages
11{20, 1988.

10266266

[2] L. Augustsson. Compiling Lazy Functional Languages,
Part II. PhD thesis, Chalmers University, Sweden,
1987.

[3] H. Baker. List-processing in real-time on a serial com-
puter. In CACM 21(4), pages 280{94, 1978.

[4] G. Blelloch and P. Cheng. One bounding time and
space for multiprocessor garbage collection. In ACM
SIGPLAN Symposium on Programming Language De-
sign and Implementation (PLDI), 1999.

[5] G. Burn, S. Peyton-Jones, and J. Robson. The spine-
less g-machine. In Conference on Lisp and Functional
Programming, pages 244{58, 1988.

[6] C. Cheney. A non-recursive list compacting algorithm.
In CACM 13(11), pages 677{8, 1970.

[7] R. Courts. Improving locality of reference in a garbage-
collecting memory management system. In CACM
31(9), pages 1128{38, 1988.

[8] D. Detlefs and O. Agesen. Inlining of virtual methods.
In ECOOP, 1999.

[9] E. Dijkstra et al. On-the-
y garbage collection: An
exercise in cooperation. In CACM, 21, 11, pages 966{
975, 1978.

[10] D. Doligez and X. Leroy. A concurrent generational
garbage collector for a multi-threaded implementation
of ML. In PoPL '93, pages 113{123, 1993.

[11] L. Huelsbergen and J. Larus. A concurrent copy-
ing garbage collector for languages that distinguish
(im)mutable data. In 4th ACM Symposium on Princi-
ples and Practice of Parallel Programming, Vol. 28(7)
of ACM SIGPLAN Notices, pages 73{82, 1993.

[12] D. Johnson. Trap architectures for lisp systems.
In Conference on Lisp and Functional Programming,
pages 79{86, 1990.

[13] D. Johnson. The case for a read barrier. In ASPLOS-
IV, pages 279{87, 1991.

[14] T. Johnsson. Compiling Lazy Functional Languages.
PhD thesis, Chalmers University, Sweden, 1987.

[15] R. Jones and R. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley,
1996.

[16] S. P. Jones. The Spineless Tagless g-machine: Second
attempt. In Workshop on the Parallel Implementation
of Functional Languagesi, volume CSTR 91-07, pages
147{91. University of Southampton, 1991.

[17] S. P. Jones. Implementing lazy functional languages on
stock hardware: the Spineless Tagless g-machine. In
Journal of Functional Programming, 1992.

[18] S. P. Jones, S. Marlow, and A. Reid. The STG runtime
system (revised). draft paper, Microsoft Research Ltd,
1999.

[19] S. P. Jones and J. Salkild. The Spineless Tagless G-
machine. In Conference on Functional Programming
Languages and Computer Architecture, pages 184{201,
1989.

[20] W. Partain. The no�b Benchmark Suite of Haskell Pro-
grams. Dept. of Computer Science, University of Glas-
gow, 1993.

[21] e. a. S.M. Nettles. Replication-based incremental
copying collection. In Proceedings of the Interna-
tional Workshop on Memory Management, LNCS 637.
Springer Verlag, 1992.

[22] B. Zorn. Comparative Performance Evaluation of
Garbage Collection Algorithms. PhD thesis, University
of California at Berkeley, 1989.

11267267

