
Lock Free Data Structures using STM in Haskell 

Anthony Discolo1, Tim Harris2, Simon Marlow2, Simon Peyton Jones2, 
Satnam Singh1

1 Microsoft, One Microsoft Way, Redmond, 
WA 98052, USA 

{adiscolo, satnams}@microsoft.com 
http://www.research.microsoft.com/~satnams

2 Microsoft Research, 7 JJ Thomson Avenue, Cambridge, 
CB3 0FB, United Kingdon 

{tharris, simonmar, simonpj}@microsoft.com 

Abstract. This paper explores the feasibility of re-expressing concurrent algo-
rithms with explicit locks in terms of lock free code written using Haskell’s im-
plementation of software transactional memory. Experimental results are pre-
sented which show that for multi-processor systems the simpler lock free im-
plementations offer superior performance when compared to their correspond-
ing lock based implementations. 

1 Introduction 

This paper explores the feasibility of re-expressing lock based data structures and 
their associated operations in a functional language using a lock free methodology 
based on Haskell’s implementation of composable software transactional memory 
(STM) [1]. Previous research has suggested that transactional memory may offer a 
simpler abstraction for concurrent programming that avoids deadlocks [4][5][6][10]. 
Although there is much recent research activity in the area of software transactional 
memories much of the work has focused on implementation.  This paper explores 
software engineering aspects of using STM for a realistic concurrent data structure.  
Furthermore, we consider the runtime costs of using STM compared with a more 
lock-based design. 

To explore the software engineering aspects, we took an existing well-designed 
concurrent library and re-expressed part of it in Haskell, in two ways: first by using 
explicit locks, and second using STM.  The comparison between these two implemen-
tations is illuminating. 

To explore performance, we instrumented both implementations. In particular, we 
instrument the implementations using a varying number of processors in order to 
discover how much parallelism can be exploited by each approach.  Our results 
should be considered as highly preliminary, because our STM implementation is 
immature. 

Finally, we draw a conclusion about the feasibility of lock free data structures in 
Haskell with STM from both a coding effort perspective and from a performance 
perspective.  Although previous work has reported micro-benchmarks [3] and appli-

http://www.research.microsoft.com/~satnams


cation level benchmarks [1] for various STM implementation schemes we focus here 
on benchmarks which compare explicitly locked and lock free implementations based 
on STM. 

2 Background: STM in Concurrent Haskell 

Software Transactional Memory (STM) is a mechanism for coordinating concurrent 
threads.  We believe that STM offers a much higher level of abstraction than the 
traditional combination of locks and condition variables, a claim that this paper 
should substantiate.  In this section we briefly review the STM idea, and especially its 
realization in concurrent Haskell; the interested reader should consult [2] for much 
more background and details. 

Concurrent Haskell [8] is an extension to Haskell 98, a pure, lazy, functional pro-
gramming language. It provides explicitly-forked threads, and abstractions for com-
municating between them.  These constructs naturally involve side effects and so, 
given the lazy evaluation strategy, it is necessary to be able to control exactly when 
they occur.  The big breakthrough came from using a mechanism called monads [9]. 
Here is the key idea: a value of type IO a is an “I/O action” that, when performed 
may do some input/output before yielding a value of type a.  For example, the func-
tio tCharns pu  and getChar have types:    
putChar :: Char -> IO () 
getChar :: IO Char 
 
That is, putChar takes a Char and delivers an I/O action that, when performed, 

prints the string on the standard output; while getChar is an action that, when per-
formed, reads a character from the console and delivers it as the result of the action.  
A complete program must define an I/O action called main; executing the program 
means performing that action. For example: 
   
main :: IO () 
main = putChar 'x' 
 
I/O actions can be glued together by a monadic bind combinator. This is normally 

used through some syntactic sugar, allowing a C-like syntax. Here, for example, is a 
complete program that reads a character and then prints it twice: 

 
main = do { c <- getChar; putChar c; putChar c } 
 
Threads in Haskell communicate by reading and writing transactional variables, 

or TVars.  The operations on TVars are as follows: 
 
data TVar a 
newTVar   :: a -> STM (TVar a) 
readTVar  :: TVar a -> STM a 
writeTVar :: TVar a -> a -> STM () 



 
All these operations all make use of the STM monad, which supports a carefully-
designed set of transactional operations, including allocating, reading and writing 
transactional variables.  The readTVar and writeTVar operations both return 
STM actions, but Haskell allows us to use the same do {...} syntax to compose 
STM actions as we did for I/O actions. These STM actions remain tentative during 
their execution: in order to expose an STM action to the rest of the system, it can be 
passed to a new function atomically, with type 
   
atomically :: STM a -> IO a 
 

It takes a memory transaction, of type STM a, and delivers an I/O action that, when 
performed, runs the transaction atomically with respect to all other memory transac-
tions.  For example, one might say: 
 
main = do { ...; atomically (getR r 3); ... } 

 
Operationally, atomically takes the tentative updates and actually applies them to 
the TVars involved, thereby making these effects visible to other transactions. The 
atomically function and all of the STM-typed operations are 
built over the software transactional memory. This deals with maintaining a per-
thread transaction log that records the tentative accesses made to TVars.  When 
atomically is invoked the STM checks that the logged accesses are valid – i.e. no 
concurrent transaction has committed conflicting updates.  If the log is valid then the 
STM commits it atomically to the heap. Otherwise the memory transaction is re-
executed with a fresh log. 
 
Splitting the world into STM actions and I/O actions provides two valuable guaran-
tees: (i) only STM actions and pure computation can be performed inside a memory 
transaction; in particular I/O actions cannot; (ii) no STM actions can be performed 
outside a transaction, so the programmer cannot accidentally read or write a TVar 
without the  protection of atomically. Of course, one can always write atomi-
cally (readTVar v) to read a TVar in a trivial transaction, but the call to 
atomically cannot be omitted. As an example, here is a procedure that atomically 
increments a TVar: 
 
incT :: TVar Int -> IO () 
incT v = atomically (do x <- readTVar v 
      writeTVar v (x+1)) 
 

The implementation guarantees that the body of a call to atomically runs atomi-
cally with respect to every other thread; for example, there is no possibility that an-
other thread can read v between the readTVar and writeTVar of incT. 

A transaction can block using retry: 
 



retry :: STM a 
 

The semantics of retry is to abort the current atomic transaction, and re-run it after 
one of the transactional variables has been updated.  For example, here is a procedure 
that decrements a TVar, but blocks if the variable is already zero: 
 
decT :: TVar Int -> IO () 
decT v = atomically (do x <- readTVar v  
      if x == 0  

     then retry  
         else return () 
      writeTVar v (x-1)) 
 
Finally, the orElse function allows two transactions to be tried in sequence: (s1 

`orElse` s2) is a transaction that first attempts s1; if it calls retry, then s2 is 
tried instead; if that retries as well, then the entire call to orElse retries.  For exam-
ple, this procedure will decrement v1 unless v1 is already zero, in which case it will 
decrement v2.  If both are zero, the thread will block: 
 
decPair v1 v1 :: TVar Int -> TVar Int -> IO () 
decPair v1 v2 = atomically (decT v1 `orElse` decT v2) 
 
In addition, the STM code needs no modifications at all to be robust to exceptions.  

The semantics of atomically is that if an exception is raised inside the transaction, 
then no globally visible state change whatsoever is made.  

3 Programming ArrayBlockingQueue using STM 

We selected the ArrayBlockingQueue class from JSR-166 [7] as the basis for 
our experiment.  We use this class solely as an example from an existing library, 
rather than intending to make comparisons between the Haskell versions and those in 
Java. The name ArrayBlockingQueue is a bit of a misnomer, since this class 
represents a fixed length queue but contains blocking, non-blocking, and timeout 
interfaces to remove an element from the head of the queue and insert an element into 
the tail of the queue.  The combination of these interfaces in one class complicates the 
implementation.   

We built two implementations of (part of) the ArrayBlockingQueue data type 
in Haskell.  The first,  ArrayBlockingQueueIO, is described in Section 3.1, 
and uses a conventional lock-based approach.  The second, ArrayBlock-
ingQueueSTM, is described in Section 3.2, and uses transactional memory.  Our 
goal is to contrast these two synchronization mechanisms, so we have tried to main-
tain as much shared code as possible, aside from synchronization. 

We did not implement all interfaces of the Java ArrayBlockingQueue class.  In-
stead, we selected representative methods from each of the three interfaces, as well as 
a few methods from other utility interfaces:  



 
• take: Removes an element from the head of the queue, blocking if the 

queue is empty 
• put: Inserts an element at the tail of the queue, blocking until space is 

available if the queue is full 
• peek: Removes an element from the head of the queue if one is immedi-

ately available, otherwise return Nothing 
• offer: Inserts an element at the tail of the queue only if space is available 
• poll: Retrieves and removes the head of this queue, or returns null if this 

queue is empty 
• pollTimeout: Retrieves and removes the head of this queue, waiting up 

to the specified wait time if necessary for an element to become available 
• clear: Atomically removes all elements from the queue. 
• contains: Returns true if this queue contains the specified element. 
• remainingCapacity: Returns the number of additional elements that 

this queue can ideally (in the absence of memory or resource constraints) 
accept without blocking 

• size: Returns the number of elements in this queue 
• toArray: Returns an array containing all of the elements in this queue, in 

proper sequence 

3.1 The conventional locking implementation 

Here is the Haskell data structure definition for the locking implementation: 
 
data ArrayBlockingQueueIO e = ArrayBlockingQueueIO { 
  iempty :: QSem, 
  ifull :: QSem, 
  ilock :: MVar (), 
  ihead :: IORef Int, 
  itail :: IORef Int, 
  iused :: IORef Int, 
  ilen :: Int, 
  ia :: IOArray Int e 
  } 

 
A bit of explanation is necessary for readers not familiar with Haskell.  The data 

block defines a data structure with named fields.  The e in the definition is a type 
variable enabling an arbitrary type to be used over the fields.  The format of each 
field is <field name> :: <type>.  The following lists the types used in the structure: 

 
• QSem: a traditional counting semaphore 
• MVar (): a mutex 
• IORef Int : a pointer to an integer 



• IOArray Int e: a pointer to an array of objects of type e indexed over 
integers 
 

  Let’s now take a look at the implementation of some of the methods.  Here is the 
top-level implementation of takeIO, which removes an element from the queue: 

 
  takeIO :: ArrayBlockingQueueIO e -> IO e 
takeIO abq 
  = do b <- waitQSem (iempty abq) 
       e <- withMVar  

    (ilock abq) 
    (\dummy -> readHeadElementIO abq True) 

       return e 
 

The takeIO method must first wait for the iempty semaphore using 
waitQSem and then lock the queue mutex with withMVar.  The mutex is necessary 
because the iempty and ifull semaphores simply signal the availability of a 
queue element or an empty slot in the queue, and they do not guarantee mutual exclu-
sion over any of the fields of the ArrayBlockingQueueIO structure.  Given this 
structure may be accessed concurrently by multiple threads, the mutex is necessary.  
Therefore, after acquiring the iempty semaphore, the queue lock must also be ac-
quired before calling readHeadElementIO to read a queue element.  The com-
plexity of managing the semaphores and the lock over all the methods is considerable, 
as we will see in the remainder of this section. 

Here is the top-level implementation of peekIO, which looks at the first element 
of the queue, without removing it: 

 
  peekIO :: ArrayBlockingQueueIO e -> IO (Maybe e) 
peekIO abq 
  = do b <- tryWaitQSem (iempty abq) 
       if b 
          then do  
            me <- withMVar  

    (ilock abq) 
    (\dummy -> do  

                       u <- readIORef (iused abq) 
                       if u == 0 
                          then return Nothing 
                          else do  
                            e <- readHeadElementIO 
                                   abq  

                                     False 
                            return (Just e)) 
            signalQSem (iempty abq) 
            return me 
          else return Nothing 
 



Because peek is a non-blocking method, the acquisition of the iempty semaphore 
is attempted with tryWaitQSem, which returns true if the semaphore was acquired. 
The remainder of the peek logic is executed only if the semaphore is acquired.  In 
addition, the iempty semaphore must be signaled since the queue element value was 
copied and not actually removed from the queue.  Care has to be taken to prevent 
bugs such as returning without releasing the mutex or acquiring multiple mutexes in 
the correct order, for example.  This shows how fragile the synchronization code is in 
the locking version. 

In order to get a complete picture of the take/peek code path, we must look at the 
implementation of readHeadElementIO: 

 
readHeadElementIO :: ArrayBlockingQueueIO e -> Bool  

-> IO e 
readHeadElementIO abq remove 
  = do h <- readIORef (ihead abq) 
       e <- readArray (ia abq) h 
       if remove 
          then do let len = ilen abq 
                      newh = h `mod` len 
                  u <- readIORef (iused abq) 
                  writeIORef (ihead abq) newh 
                  writeIORef (iused abq) (u-1) 
                  signalQSem (ifull abq) 
          else return () 
       return e 

 
Here, the different types of synchronization require different logic from the im-

plementation.  The locking version readHeadElementIO requires that the initial 
acquisition of the iempty semaphore and the queue mutex occur outside the method 
invocation.  If readHeadElementIO were only used by takeIO and peekIO, 
then this would not be the case, but we invite the curious reader to look at the imple-
mentation of pollTimeoutIO and pollReaderIO below for yet another syn-
chronization requirement imposed by that code path.  The readHeadElementIO 
method takes a remove parameter that specifies whether the head element is copied or 
removed from the queue.  If the element is removed, then the ifull semaphore must 
be signaled to signify that the queue has shrunk by one element. 

Finally, let us look at the implementation of the most complex method in the Ar-
rayBlockingQueue implementation: pollTimeoutIO.  This method issues a 
blocking read from the head of the queue with a timeout.   

 
data TimeoutContext e = TimeoutContext { 
  done :: MVar Bool, 
  val :: Chan (Maybe e) 
  } 
 
newTimeoutContextIO :: IO (TimeoutContext e) 



newTimeoutContextIO 
  = do d <- newMVar False 
       c <- newChan 
       return (TimeoutContext d c) 
 

pollTimeoutIO :: ArrayBlockingQueueIO e  
        -> TimeDiff -> IO (Maybe e) 
pollTimeoutIO abq timeout 
  = do ctx <- newTimeoutContextIO 
       forkIO (pollReaderIO abq ctx) 
       forkIO (pollTimerIO timeout ctx) 
       me <- readChan (val ctx) 
       return me 
 
In order to achieve a temporarily blocking read, the implementation of poll-

TimeoutIO forks two new threads, one responsible for the read (pollReaderIO) 
and one responsible for the timeout (pollTimerIO).  A data structure (Timeout-
Context) is shared between them to synchronize which thread finishes first and to 
hold the return value, if any.   

 
pollReaderIO :: ArrayBlockingQueueIO e  

-> TimeoutContext e -> IO () 
pollReaderIO abq ctx 
  = do waitQSem (iempty abq) 
       modifyMVar 
      (done ctx) 
      (\d -> do 
            if not d 
               then do  
                 e <- withMVar  

        (ilock abq) 
  (\dummy -> 

                          readHeadElementIO abq True) 
                 writeChan (val ctx) (Just e) 
               else signalQSem (iempty abq) 

  return True) 
 
The pollReaderIO method requires a bit of explanation.  It first must wait for 

the queue’s iempty semaphore to become available, signifiying an element is able 
to be read.  It then atomically reads the TimeoutContext’s done flag to see if the 
timeout thread has already completed.  If the timeout has not occurred, then it reads 
the element from the queue, placing it in the TimeoutContext’s result channel.  
If the timeout has occurred, then the thread signals the iempty semaphore, effec-
tively making the element readable by another thread.  After the checks have been 
made, then the done flag is released. 
 
startTimerIO :: TimeDiff -> IO (Chan ()) 



startTimerIO timeout 
  = do c <- newChan 
       forkIO (timerIO c timeout) 
       return c 
 
timerIO :: Chan () -> TimeDiff -> IO () 
timerIO c timeout 
  = do let td = normalizeTimeDiff timeout 
       let ps = (tdSec td) * 1000000 
       threadDelay ps 
       writeChan c () 
       return () 
 
pollTimerIO :: TimeDiff -> TimeoutContext e -> IO () 
pollTimerIO timeout ctx 
  = do c <- startTimerIO timeout 
       readChan c 
       modifyMVar 
         (done ctx) 
         (\d -> do 
            if not d 
               then writeChan (val ctx) Nothing 
               else return () 
            return True) 

 
The pollTimerIO method implements a timer with respect to the read being 

performed by the pollReaderIO thread,  It uses the startTimerIO method that 
simply writes Nothing into a channel after the timeout has occurred1.  The poll-
TimerIO method simply issues a blocking read on the timer channel to wait for the 
timeout, and then writes Nothing into the TimeoutContext’s result channel 
signifying a timeout has occurred only if it is the first thread to access the Timeout-
Context structure.  

3.2 The STM implementation 

Here is the Haskell data structure definition for the STM version: 
 
data ArrayBlockingQueueSTM e = ArrayBlockingQueueSTM { 
  shead :: TVar Int, 
  stail :: TVar Int, 
  sused :: TVar Int, 
  slen :: Int, 

                                                           
1 While threadDelay could be used directly instead of calling startTimerIO in the 

locking version, the additional thread is required by the STM implementation.  See the next 
section for more detail. 



  sa :: Array Int (TVar e) 
  } 
 
The following lists the types used in the structure above: 

• TVar Int: a transacted integer 
• Array Int (TVar e): a array of transacted objects of type e indexed 

over integers 
 
Note that the ArrayBlockingQueueSTM data structure definition is considera-

bly simpler because it lacks the two semaphores and one mutex that are present in the 
ArrayBlockingQueueIO implementation.  As we will see, this simplicity trans-
lates in to simpler implementations for all methods as well.  For example, here is 
takeSTM: 

 
takeSTM :: ArrayBlockingQueueSTM e -> IO e 
takeSTM abq 
  = do me <- atomically  
       (readHeadElementSTM abq True True) 
       case me of 
         Just e -> return e 
 
The atomic block in takeSTM provides the only synchronization necessary in or-

der to call readHeadElementSTM in the STM version.  The implementation of 
peek is equally simple: 

 
peekSTM :: ArrayBlockingQueueSTM e -> IO (Maybe e) 
peekSTM abq 
  = atomically (readHeadElementSTM abq False False) 

 
Again, in comparison with the locking version, there is considerably less complex-

ity in the STM version, because the readHeadElementSTM method is simply 
called within an atomic block.  Here is the implementation of readHeadEle-
mentSTM: 

 
readHeadElementSTM :: ArrayBlockingQueueSTM e  
        -> Bool -> Bool -> STM (Maybe e) 
readHeadElementSTM abq remove block  
  = do u <- readTVar (sused abq) 
       if u == 0 
          then if block 
                  then retry 
                  else return Nothing 
          else do h <- readTVar (ihead abq) 
                  let tv = sa abq ! h 
                  e <- readTVar tv 
                  if remove  



                     then do  
                       let len = slen abq 
                       let newh = h `mod` len 
                       writeTVar (shead abq) $! newh 
                       writeTVar (sused abq) $! (u-1) 
                     else return () 
                  return (Just e) 

 
The STM version readHeadElementSTM takes a remove parameter and a 

block parameter.  In contrast to readHeadElementIO, the readHeadEle-
mentSTM method contains all the synchronization logic for the take/peek path.  Note 
how the blocking read path is implemented with a retry statement.  This effectively 
restarts the entire atomic block from the beginning and is much easier for the pro-
grammer to utilize correctly than the combination of semaphores and mutexes.  The 
entire implementation of readHeadElementSTM is more concise and clear than 
the implementation of readHeadElementIO. 

Finally, here is pollTimeoutSTM: 
 
pollTimeoutSTM :: ArrayBlockingQueueSTM e  
     -> TimeDiff -> IO (Maybe e) 
pollTimeoutSTM abq timeout 
  = do c <- startTimerIO timeout 
       atomically ((do readTChan c 
                       return Nothing) 
                   `orElse` 
                   (do me <- readHeadElementSTM  
        abq True True 
                       return me)) 
 

Compared to pollTimeoutIO, notice how concise and natural the implementa-
tion of pollTimeoutSTM is with the use of the orElse statement within the 
atomic block.  Fundamentally, there are three steps: (1) start the timer, (2) try to read 
from the timer channel signifying timeout period has elapsed, and if successful return 
Nothing, and (3) try to read an element from the head of the queue, and if success-
ful return the element. If neither (2) nor (3) are satisfied, then the atomic block is 
restarted until one of these branches is successful. 

The retry and orElse methods are very powerful features of the Haskell STM 
implementation and deserve more discussion.  The retry method can be invoked 
anywhere inside the STM monad and restarts the atomic block from the beginning.  
The Haskell STM runtime manages transacted variables in an intelligent way and 
transparently blocks the transaction until one of the transacted variables has been 
modified.  (Note there cannot be non-transacted variables within the STM monad.)  
In this way, the atomic block does not execute unless there is some chance that it can 
make progress. 

Conditional atomic blocks or join patterns can be implemented with the orElse 
method.  Note how the locking version forks two worker threads with a custom syn-



chronization data structure, and how the custom synchronization logic between the 
two worker threads affects the synchronization logic throughout the rest of the pro-
gram.  In the STM version, the worker threads and custom synchronization logic are 
replaced by one orElse statement. This one statement more accurately reflects the 
programmer’s intent in that allows the runtime to more efficiently and intelligently 
manage the execution of the atomic block. For example, if additional processors are 
available, each branch of the orElse statement may be executed on different proc-
essors and synchronized within the runtime, or each branch may be run sequentially.   

3.3 Summary 

It should have become clear by now that it is much easier to write thread-safe code 
using STM than using locks and condition variables. Not only that, but the STM code 
is far more robust to exceptions.  Suppose that some exception happened in the mid-
dle of takeIO.  For example, a null-pointer dereference or divide by zero.  If such a 
thing could happen, extra exception handlers would be required to restore invariants 
and release locks, otherwise the data structure might be left in an inconsistent state.  
This error recovery code is very hard to write, even harder to test, and in some im-
plementations may have a performance cost as well. 

In contrast, the STM code needs no modification at all to be robust to exceptions, 
since atomically prevents any globally visible state changes from occurring if an 
exception is raised inside the atomic block.   

4 Performance measurements 

Once we completed the locking and lock-free implementations of ArrayBlock-
ingQueue, we measured their performance under various test loads. 

4.1 Test setup 

The test harness includes the following command line parameters: 
• test implementation (locking or STM) 
• number of reader and writer threads 
• number of iterations per thread 
• length of the ArrayBlockingQueue 

 
For this paper, we chose to investigate the performance of the blocking Array-

BlockingQueue methods.  Specifically, we wanted to determine whether the respec-
tive implementations ran faster as additional threads are created and/or additional 
processors are added, keeping all other parameters the same. 

The test creates an ArrayBlockingQueue of type integer is created, and an equal 
number of reader and writer threads are created that simply loop for the specified 
number of iterations performing take or put operations on the queue.  The test com-
pletes when all threads have terminated. 



For each processor configuration (1-8 processors), we varied only the number of 
threads in each test, so that the parameters of each test were {2, 4, 6, 8, 10, 12, 14} 
reader/writer threads, 100000 iterations, and queue length 100.  

All of our measurements were made on our prototype implementation of STM in 
Haskell.  This implementation is immature and has received little performance tuning.  
In particular, memory is reclaimed by a basic single-threaded stop-the-world genera-
tional collector.  This degrades the performance of the STM results because the cur-
rent STM implementation makes frequent memory allocations.  In ongoing work we 
are developing a parallel collector and also removing the need for dynamic memory 
allocation during transactions.  Nevertheless the measurements are useful to give a 
very preliminary idea of whether or not the two approaches have roughly comparable 
performance. 

While the GHC runtime has a wide variety of debugging flags that can be used to 
monitor specific runtime events, this paper only focuses on the elapsed time of the 
tests.  We ran each test on a Dell Optiplex 260 Pentium 4 3GHz CPU with 1GB RAM 
running Windows XP Professional SP2 and with successive processors enabled on a 
4-way dual core Opteron HP DL585 multiprocessor with 1MB L2 cache per proces-
sor and 32GB RAM running Windows XP Server 2003 64-bit SP1 resulting in nine 
runs total per test.  Our main interest was not the actual elapsed time values, but how 
the performance changed as additional processors were enabled.  

4.2 Performance Results 

The performance results are shown in the following figures. 

Uniprocessor

0

1

2

3

4

5

6

7

8

9

2/200000 4/200000 6/200000 8/200000 10/200000 12/200000 14/200000

Worker Threads/Iterations

El
ap

se
d 

Ti
m

e 
(s

ec
.)

IO

STM

 

Figure 1: Uniprocessor Performance 



 

Processors=2

0

5

10

15

20

25

30

35

2/100000 4/100000 6/100000 8/100000 10/100000 12/100000 14/100000

Worker Threads/Iterations

E
la

ps
ed

 T
im

e 
(s

ec
.)

IO
STM

 
Figure 2: Two Processor Performance 

Processors=4

0

5

10

15

20

25

30

35

2/100000 4/100000 6/100000 8/100000 10/100000 12/100000 14/100000

Worker Threads/Iterations

E
la

ps
ed

 T
im

e 
(s

ec
.)

IO
STM

 
Figure 3: Four Processor Performance 



Processors=6

0

5

10

15

20

25

30

35

2/100000 4/100000 6/100000 8/100000 10/100000 12/100000 14/100000

Worker Threads/Iterations

El
ap

se
d 

Ti
m

e 
(s

ec
.)

IO
STM

 
Figure 4: Six Processor Performance 

Processors=8

0

5

10

15

20

25

30

35

2/100000 4/100000 6/100000 8/100000 10/100000 12/100000 14/100000

Worker Threads/Iterations

El
ap

se
d 

Ti
m

e 
(s

ec
.)

IO
STM

 
Figure 5: Eight Processor Performance 

 The results are very encouraging. On a uniprocessor, the performance of the lock-
ing version and the STM version were virtually identical.  Once two or more proces-



sors were enabled, the STM version was consistently faster than the locking version 
running on the same number of processors. In fact, the fastest times on two or more 
processors were achieved by the STM version.   

The STM and locking implementations are not exactly identical in their behavior. 
An important difference is the way in which each implementation deals with excep-
tions. The STM implementation has, in effect, a built in default exception handler 
which will cause the transaction to be rolled back. The locking version does not have 
this robust behavior, so that unexpected exceptions could leave the queue in an incon-
sistent state.  It could be modified to handle exceptions and restore invariants, but that 
would make the code more complicates still, and would degrade performance. Con-
sequently we should expect the performance of the STM implementation to improve 
even further over the locking version once error handling code has been added. 

5 Related Work 

Related work by Carlstrom et. al. [1] has shown that the conversion of lock based 
Java programs to versions that use transactions is often straightforward and some-
times leads to performance improvements. Hammond et. al. [3] used the TestHistro-
gram micro-benchmark which counts random numbers between 0 and 100 in bins. 
They also observed scaling for a transactional version up to 8 CPUs. Many bench-
marks compare a single processor lock version of an algorithm against a transactional 
version that can scale up with the number of processors. In our experimental work we 
designed both the lock version and transactional versions to have the potential for 
exploiting extra processors. 

6 Future Work 

We are now investigating to what extent our observations apply to STM implementa-
tions in an imperative language. We are taking the same ArrayBlockingQueue 
example and coding it in C# with explicit locks and then again using an STM library 
called SXM [5]. The SXM library has user configurable conflict managers which will 
give us greater experimental control to help understand what kind of polices work 
best under different kinds of loads. We believe the best way to understand the charac-
teristics of various STM implementation schemes is to build libraries and applications 
that place representative stresses on the underlying implementation. 

7 Conclusions 

It has been claimed that lock free concurrent programming with STM is easier than 
programming explicitly with locks. Our initial investigation into the re-
implementation of a concurrent data structure and its operations from the JSR-166 
suite in a functional language suggests that it is indeed the case that STM based code 
is easier to write and far less likely to be subject to deadlocks. Furthermore, the opti-
mistic concurrency features of the STM implementation that we used offer consider-



able performance advantages on SMP multi-processor and multi-core systems com-
pared to pessimistic lock based implementations.  

The STM programming methodology is much easier to understand, concise, and 
less error-prone than traditional locking methodology using mutexes and semaphores. 
A key feature of the Haskell STM implementation is the orElse combinator which 
we used to compose small transactions into composite transactions. Haskell’s type 
system also helped to statically constrain our programs to avoid stateful operations in 
transactions which can not be rolled back by prohibiting expressions in the IO monad 
in transactions. 

Even with a very early implementation of the STM multiprocessor runtime, the 
STM implementation consistently outperformed the locking version when two or 
more processors were available.  We expect even better STM performance as the 
language runtime implementation matures. 

The encouraging initial results with library level units of concurrent data structures 
and operations paves the path for us to now build and instrument entire applications 
built out of lock free data structures designed using the functional language based 
methodology presented in this paper. Although locks still have a role in certain kinds 
of low level applications we believe that application level concurrency may often be 
tackled more effectively with STM as demonstrated in this paper. 

References 

1. B. D. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. Minh, L. Hammond, C. Kozyrakis, 
K. Olukotun. Transactional Execution of Java Programs. SCOOL 2005. 

2. T. Harris, S. Marlow, S. Peyton Jones, M. Herlihy. Composable Memory Transactions.  
PPoPP 2005. 

3. L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis, and K. 
Olukotun. Programming with transactional coherence and consistency. In Proceedings of 
the 11th International Conference on Architecture Support for Programming Languages 
and Operating Systems, Oct. 2004. 

4. T. Harris and K. Fraser. Language support for lightweight transactions. In OOPSLA ’03: 
Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented program-
ing, systems, languages, and applications, pages 388–402. ACM Press, 2003. 

5. M. P. Herlihy, V. Luchangco, M. Moir, and W. M. Scherer. Software transactional mem-
ory for dynamic-sized data structures. In Proceedings of the 22nd Annual Symposium on 
Principles of Distributed Computing, July 2003. 

6. M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free 
data structures. In Proceedings of the 20th International Symposium. on Computer Archi-
tecture 1993. 

7. Itzstein, G. S, Kearney, D. Join Java: An alternative concurrency semantics for Java. 
Tech. Rep. ACRC-01-001, University of South Australia, 2001. 

8. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In 23rd ACM Symposium 
on Principles of Programming Languages (POPL’96), pp. 295–308. 

9. S. Peyton Jones and P. Wadler. Imperative functional programming. In 20th ACM Sym-
posium on Principles of Programming Languages (POPL’93), pp. 71–84. 

10. N. Shavit and S. Touitou. Software transactional memory. In Proc. of the 14th Annual 
ACM Symposium on Principles of Distributed Computing, Ottawa, Canada, August 1995. 


