Intel Concurrent Collections for Haskell

Ryan Newton

Intel
ryan.r.newton@intel.com

Abstract

Intel Concurrent Collections (CnC) is a parallel programming
model in which a network of steps (functions) communicate
through message-passing as well as a limited form of shared mem-
ory. This paper describes a new implementation of CnC for Haskell.
Compared to existing parallel programming models for Haskell,
CnC occupies a useful point in the design space: pure and deter-
ministic like Strategies, but more explicit about granularity and
the structure of the computation, which affords the programmer
greater control over parallel performance. We present results on 4,
32, and 48-core machines demonstrating parallel speedups ranging
between 7X and 22X on non-trivial benchmarks.

Keywords Parallel Programming, Runtime Systems, Graph-based
models
1. Introduction

Graph-based parallel programming models, including data-flow
and stream processing, offer an attractive means of achieving robust
parallel performance. At their best, programming systems based on
synchronous dataflow (SDF) have been able to show fully auto-
matic parallelization and excellent scaling on a wide variety of
parallel architectures, without program modification. StreamIT (6),
for example, effectively targets mainstream shared memory multi-
cores, Tilera many-cores, IBM Cell, GPUs, and workstation clus-
ters.

If we are to avoid a world where dominant parallel program-
ming models are based on particular hardware platforms (e.g.
CUDA (15)), graph-based programming based on strong theoreti-
cal foundations is one good solution, enabling both more accessi-
ble and more portable parallel programming. And, while domain
specific, the application domain is surprisingly large and rapidly
growing—including most data-intensive processing, such as graph-
ics, digital signal processing, and financial analytics.

How does the Haskell programmer fit in? Past research has ex-
plored the relationship between functional programming and syn-
chronous dataflow (10) and the semantics of streams and signals
(165 20). But in practice, while Haskell programmers have excel-
lent access to pure parallelism (and, increasingly, to nested data-
parallelism) to accomplish producer-consumer parallelism, they
typically leave purity behind and venture into the domain of IO
threads, MVars, and Chans. This is a low-level, nondeterministic

[Copyright notice will appear here once ’preprint’ option is removed.]

Chih-Ping Chen

Intel

chih-ping.chen@intel.com

Simon Marlow

Microsoft Research

simonmar@microsoft.com

put-tag (putt)

put

ltems

Figure 1. The visual notation for (static) CnC collection graphs.
By convention, triangles denote tag collections, ovals step collec-
tions, and rectangles item collections. Our “GraphBuilder” tool for
Visual Studio allows the construction of graph specifications via a
GUI tool.

form of programming that does not support the high-level transfor-
mations that can make graph-based programming so efficient.

The Haskell edition of Intel Concurrent Collections (CnC) is an
attempt to bring an efficient multicore implementation of a graph-
based programming model to Haskell, while exposing an interface
that remains deterministic and pure. The primary contributions of
this paper are the following:

e We bring a new parallel programming paradigm to Haskell,
which occupies a useful point in the design space: pure and
deterministic like Strategies (19), but more explicit about gran-
ularity and the structure of the computation.

Haskell CnC allows multiple scheduling policies to be pro-
vided, giving the programmer greater control over parallel ex-
ecution. New schedulers can be readily developed, and we de-
scribe ten different schedulers that we have already built.

Compared to implementations of the CnC model for other lan-
guages, the Haskell implementation can guarantee determin-
ism. The Haskell implementation is shorter, clearer, and easier
to modify and extend.

e We demonstrate respectable speedups with the current imple-
mentation, and identify areas for improvement.

This paper describes Haskell CnC version 0.1.4 (soon to be re-
leased on Hackage; 0.1.3 is available as of this writing). This work
has stress-tested GHC parallel capabilities, exposed one runtime
bug, and highlighted the effects of improvements that will be avail-
able in the 6.14 release. We report results on parallel machines
ranging from 4 to 48 cores. The resulting lessons are potentially
useful to other projects aiming to achieve significant parallel per-
formance on GHC. Our tests achieved maximum parallel speedups
in the range of 7X to 22X on non-trivial benchmarks.

2010/6/20

2. The CnC Model

In the Intel CnC model, a network of steps (functions) communi-
cate through message-passing as well as a limited form of shared
memory. Steps are stateless and execute only when they receive a
message, but may use that message to get and put data into shared
tables. These are immutable tables of key-value pairs called item
collections. Item collections are essentially constructed both lazily
and collaboratively. If a step attempts to get an item that is not yet
available, it blocks until a producer makes it available.

In CnC parlance the messages that cause steps to execute are
called tags (a term that derives from the fact that these messages
typically serve as keys for looking up data within item collections).
Thus a CnC graph consists of step, tag, and item collections in pro-
ducer/consumer relationships. An individual step, when executed,
can issue puts and gets to item collections as well as puts to create
new tag messages (invoking downstream steps).

CnC Methodology

One of the reasons CnC has been well received within Intel and
with existing customers is that it espouses a clear methodology.
A CnC program consists of (1) a specification, typically writ-
ten in a simple graph-description languagd’| and (2) code in a
traditional (“host”) language that provides an implementation for
steps. The Intel Concurrent Collections programming model is de-
scribed more fully in (8). For this paper, we will omit discussion
of the graph specification language (described elsewhere) and con-
sider only standalone Haskell CnC programs that specify their own
graphs (albeit without the metadata present in a separate specifica-
tion file).

The CnC methodology allows for a separation of concerns be-
tween the domain expert who understands the structure of the com-
putation and writes the spec, and the runing expert who knows
how to achieve efficient parallel execution by choosing and tuning
schedulers and so on. The domain expert is expected to first identify
the computation steps in their application and, second, to identify
control and data dependencies—which become tag and item col-
lections, respectively.

3. Haskell CnC

Intel’s primary implementation of CnC is Intel Concurrent Col-
lections for C++™. Customers use CnC as a C++ library (plus
optional mini-language for graph specifications). The model itself
is independent of the host-language that supplies step functions;
indeed, our academic collaborators have created implementations
of CnC for Java and .NET. But why, then, yet another CnC for
Haskell? There are four reasons:

¢ Determinism and purity — Our proof of determinism for CnC
(in press) requires that steps be pure functions. (For example,
if steps have hidden internal state, they can expose nondeter-
ministic execution order in the results.) An unsatisfying aspect
of all other CnC implementations is that it is impossible to en-
force step purity, especially when CnC is only a library. Haskell
provides the ability to enforce the model’s own rules and make
its determinism guarantee solid. Conversely, CnC provides to
Haskell programs the ability to execute graph computations in-
side pure functions.

¢ Rapid prototyping — Haskell has an excellent combination
of high-level programming, reasonably good performance, and
multi-paradigm support for parallelism. We have been able to
experiment with new language features (such as adding parallel

! Graphs can also be edited visually and appear as in Figure

for loops within step code, Section|3.1.1)) with extremely small
amounts of code.

Reference implementation — The simplest of our Haskell CnC
runtime schedulers are very short indeed. For anyone who un-
derstands Haskell, it provides an easy to understand reference
model for CnC. Further, among our implementations are pure
schedulers that not only expose safe interfaces, but also are
internally effect-free. Such a pure implementation provides a
clearer illustration of the CnC semantics.

Haskell is an exciting place for parallelism

Therefore we wish to both contribute to that space and bene-
fit from innovations there. In Haskell (and CnC), concepts like
idempotent work stealing (13 become applicable—an impossi-
bility in Intel Concurrent Collections for C++, which is based
on Intel Thread Building Blocks (TBB).

Further, while most CnC implementations (including I0-based
Haskell implementations) use some form of mutable state to
represent item collections, the pure implementation of Haskell
CnC, on the other hand, performs only functional updates to a
data structure representing all item collections in a graph. These
updates are associative and commutative (set union), which
opens up a number of possibilities for more loosely coupled par-
allel (and even distributed) implementations—interesting av-
enues for future work available only in the pure implementa-
tion.

3.1 Haskell CnC API

The Haskell CnC API is structured around two monads: StepCode
and GraphCode. Computations in the GraphCode monad construct

CnC graphs. The monad’s methods include newTagCol and newItemCol

for creating tag and item collections, respectively. A call to prescribe
has the effect of adding to the graph both a step and an edge con-
necting it to exactly one tag collectio The step itself is a function
of one argument (its tag).

newTagCol
newltemCol ::

:: GraphCode (TagCol a)
GraphCode (ItemCol a b)
Step tag = tag — StepCode ()
prescribe :: TagCol tag — Step tag — GraphCode ()

Each step in the CnC graph is realized by a computation in the
StepCode monad. A step interacts with its neighbors in the graph
by getting and putting items and by emitting new tags.

get :: Ord a =) ItemCol a b — a — StepCode b

put :: Ord a =) ItemCol a b — a — b — StepCode ()
— Emit a new tag into the graph; putt is short for put-tag:

putt :: TagCol tag — tag — StepCode ()

One way to think of a tag collection TagCol tag is as a set of
steps with type Step tag. Steps are added to the set by calling
prescribe. The steps in a TagCol are executed by putt, which
applies each step in the set to the supplied tag.

The following code snippet uses put and get to define a simple
“plus one” step which reads the number indexed by an input tag
and outputs its successor.

incrStep inpl outl tag =
x < get inpl tag
put outI tag (x+1)

2While we support direct visualization and user manipulation of CnC
graphs in other CnC implementations, one advantage of programmatically
constructing graphs, of course, is that all the normal tools of abstraction can
be used for building and reusing graph topologies.

2010/6/20

In the Haskell edition of CnC there are no explicitly established
edges between item collections and steps. The item collections
inpI and outI referenced in incrStep above are first class values.
The Haskell CnC idiom is to define steps within the lexical scope
of the item collection bindings, or to define steps at top-level and
pass referenced item collections as arguments (a ReaderT monad
transformer would do as well).

The above functions allow us to create graphs and steps. We al-
most have a basic but useful interface; only one thing is missing—
inserting input data and retrieving results. In CnC, we refer to the
program outside the CnC graph as the environment. The environ-
ment can put an initial set of tags and items into the graph, execute
the graph to quiescence (no more steps can execute), and finally
retrieve outputs with gets.

A third monad could be used to represent environment com-
putations that interact with CnC graphs. But to keep things sim-
ple we instead provide a way to lift StepCode computations into
the GraphCode monad and we use it to both construct and execute
graphs. One such function would be sufficient, but to allow a max-
imally large range of scheduling strategies, we currently enforce a
split-phase structure in which the user executes one initialize and
one finalize action for input and output respectively. (Continuous
interaction between environment and graph is a topic not treated in
this paper.)

initialize :: StepCode a — GraphCode a

finalize : StepCode a — GraphCode a

A particular runtime scheduler is permitted to disallow gets in
the initialize step and to quiesce the graph before the finalize step,
thus forcing these entry-points to be used for the purposes indi-
cated by their names. Once a GraphCode computation is assembled,
evaluating the graph to yield a final value is done, naturally, with
runGraph:

runGraph :: GraphCode a — a

Note that, like runState in the standard library, runGraph is
a safe operation. The CnC API may appear to emphasize effects
(putting and getting) but this interface is merely a convenience.
Again, steps could just as well be implemented as pure functions
that return a list of new items and tags (or a “Block” value to
indicate that execution blocked on an unavailable item). Indeed,
in some of our implementations steps are implemented in just this
way, yet even then we find the monadic interface more convenient.

Now with the pieces in place let’s look at an extremely simple
but complete program. The following expression computes the
value 4. It uses string tags.

runGraph $

tags < mnewTagCol

il < newItemCol

i2 < mnewItemCol

prescribe tags (incrStep il i2)

initialize$ put tags ‘‘key’’
put il ‘‘key’’ 3

finalize$ get i2 ‘‘key’’

Finally, we look at a larger example program which will also
serve as one of our benchmarks in Section 5] The full (executable)
text of the Mandelbrot benchmark is shown in Figure 2} This
program has an identical structure to the simple example above—a
SIMD computation with a single step collection.

3.1.1 Going further

Before moving on to discuss the implementation, here we will
mention some of the additional features and functions in Haskell
CnC.

Intel.Cnc

Data.Complex; Control.Monad

CDbl = Complex Double
fI = fromIntegral

— The serial kernel:
mandel :: Int — CDbl — Int
mandel max_depth ¢ = loop O 0 O

fn = magnitude
loop i z count

| i == max_depth = count

| fn(z))= 2.0 = count

| otherwise = loop (i+1) (z*z + c) (count+1)
mandelGrph :: Int — Int — Int — GraphCode Int

mandelGrph max_row max_col max_depth =

position :: TagCol (Int,Int) < newTagCol
dat :: ItemCol (Int,Int) CDbl <« newItemCol
pixel :: ItemCol (Int,Int) Int <« newlItemCol

— A step in the CnC graph:
mandelStep tag =
cplx < get dat tag
put pixel tag (mandel max_depth cplx)
prescribe position mandelStep

initialize $
forM_ [0..maxrow] $ \i —
forM_ [0..max_col]l $ \j —
z = (r_scale * fI j + r_origin) :+
(c_scale * fI i + c_origin)
put dat (i,j) z
putt position (i,j)

finalize $
— For simplicity, below we compute a meaningless metric
— of the image. Instead, write the pixels to disk here:
foldM (\acc i —
foldM (\acc j —
p <« get pixel (i, j)
p == max_depth
return (acc + (i*max_col + j))
return acc)
acc [0..max_col]
) 0 [0..max_row]

rorigin = -2.0 :: Double
r.scale = 4.0 / (fI max.row) :: Double
c.origin = -2.0 :: Double
c.scale = 4.0 / (fI max_col) :: Double

main = check = runGraph $ mandelGrph 10 10 10

putStrLn (‘‘Mandel check ’’ ++ show check)

Figure 2. A complete Haskell CnC program runnable with release
0.1.4, built with ghc -fglasgow-exts --make mandel.hs. For
the inputs 10, 10, 10 above, it should produce 593.

2010/6/20

e itemsToList — it is often useful to collect all items within
a collection (without knowing which keys are present). For
example, one can filter a set (say, for prime numbers) and learn
which passed without querying all keys in the domain.

itemsToList :: Ord tag =) ItemCol tag b
— StepCode [(tag,b)]

itemsToList does what its name implies, but its problem is that
it requires that the CnC graph be quiesced before it can be sure
no additional items are outstanding. Thus, it is a runtime error
to use itemsToList anywhere but in a finalize step, and in any
scheduler that does not support quiescence.

® cncFor — A common abstraction in other parallel runtime sys-
tems, including Cilk, TBB, and OpenMP, is the notion of a par-
allel loop in which contiguous sub-ranges of the iteration space
can be assigned to processors. As of version 0.1.4, Haskell CnC
includes the cncFor operator for use within step code.

The default cncFor implementation (used in most schedulers)
is shown below. It dynamically extends the graph with a new
step that takes a sub-range as input, then partitions the input
range into even sized pieces based on a heuristic (four times the
number of processors), and creates instances of the new step for
each of the sub-ranges.

One important use of cncFor is for spawning work in a more
structured way, i.e. cncFor 1 1000 (putt tags) rather than
forM_ [1..1000]

cncFor :: Int — Int — (Int — StepCode ())
— StepCode ()
cncFor start end body =
tags <« graphInStep newTagCol
graphInStep$ prescribe tags$ \(x,y) —
— Here we execute a sub-range serially:
forM_ [x..y] body
— Use the same splitting heuristic as the TBB auto-partitioner:
ranges = splitRange (4 * numCapabilities)
(start,end)
forM_ ranges (putt tags)

— This allows dynamic graph extension:
graphInStep :: GraphCode a — StepCode a

The short cncFor definition above is a testament to the easy
exten%i]bility of Haskell CnC compared to other incarnations of
CnC.

4. Implementation

Haskell CnC provides two families of implementations, both ex-
posing the same monadic interface: Intel.Cnc and Intel.CncPure.
For the remainder of this paper we will focus primarily on the 10-
based Intel.Cnc, because it currently provides the best parallel
performance (on most benchmarks).

The key choice in implementing CnC for GHC is how much
to rely on existing mechanisms in GHC for scheduling parallel
execution and synchronizing data access (items) vs. rebuilding

3The one caveat for this simple implementation is that the programmer
gets no guarantee as to deadlock-equivalence with a serial loop. A serial
loop with inter-iteration put-get dependencies could be deadlock free, but
its parallel counterpart could deadlock. To solve this problem, scheduler
specific implementations of cncFor are necessary that have the ability to
execute at the granularity of iteration ranges, but block at the granularity of
a single iteration.

them from scratch. The most simple (IO-based) implementation
of CnC is nearly trivial—forkI0 executes steps and MVars provide
synchronization on missing items.

Laziness and the strictness of put

There is one fundamental impedance mismatch between a lazy lan-
guage and the implementation techniques that have been designed
for graph-based programs. Work on scheduling (6% 9) assumes that
the computation represented by each graph node happens (to com-
pletion) when that node is scheduled. In a Haskell implementation
it is easy to write CnC steps that do no real work at all, instead
using put or putt to produce thunks that are not executed until
later—when the parallel graph execution is finished!

To reduce the likelihood of this mistake we have made put
and purt strict in their arguments. We have not currently opted
for deepseq because we wish the user to retain some control. The
strategies (19) approach may be useful for controlling the strictness
of steps.

4.1 Runtime Schedulers

In Haskell CnC version 0.1.4, runtime schedulers are numbered
rather than named. The idea being that there are many of them
and they proceed in a sequence of implementations from less to
more complex. Importing Intel.Cnc3 or Intel.Cncl0 employs
scheduler 3 or 10 respectively. In this paper we discuss schedulers
3,4,7,8,9, and 10. These fall into three major families, based,
respectively, on [O-threads, a global task queue, or sparks.

4.1.1 IO Threads (Scheduler 3)

GHC has very lightweight user threads; for a long time it won
the “language shootout” Threadring benchmark. In scheduler 3 we
map each CnC step onto its own IO thread (e.g. one forkIO per
step). Therefore scheduler 3 is simple and predictable. But, alas,
it suffers on programs with finer grained steps. Haskell threads,
while lightweight, are still preemptable (and require per-thread
stack space). Thus they are overkill for CnC steps, which need not
be preempted.

— Step and graph code directly use the 10 monad (safely):
StepCode t = StepCode (IO t)
GraphCode t = GraphCode (IO t)

— Tag collections store executed tags (for memoization)

— and a list of steps that are controlled by the tag collection.
TagCol a =
TagCol (IORef (Set.Set a), IORef [Step al)

— Mutable maps with support for synchronization:
ItemCol a b = ItemCol (IORef (Map a (MVar b)))

Above are the core type definitions used in scheduler 3. The is-
sue of memoization has not yet been discussed. Like quiescence,
memoization is an optional property of the model; CnC can store
the tags that have already been executed to suppress repeated exe-
cution. (This requires no storage for results, because the results of
a step are already disseminated into the tag and item collections of
the graph.) But schedulers that allow disabling memoization must
also be somewhat looser with respect to allowing multiple puts.
That is, multiple puts of the same key-value pair (i.e. overwriting
the value with an equal value) are allowed.

4.1.2 Global task pool (Schedulers 4,7,10)

These work sharing implementations use a global stack or queue of
steps, with all worker threads feeding from that pool. The number
of worker threads is roughly equal to the number of processors.

2010/6/20

Schedulers 4 and 7 both use MVars for data synchronization.
Steps use blocking operations (e.g. readMVar) to get items. How
then to maintain the pool of worker threads? At start-up, all task-
pool-based schedulers fork numCapabilities threads, but when a
thread blocks on a get, it goes out of service for an arbitrarily long
time. Therefore before blocking on a get, a worker thread must fork
a replacement.

When a blocked thread wakes up, over-subscription will occur
(more workers than processors). Both schedulers 4 and 7 adopt a
strategy of minimizing, but not preventing, over-subscription. The
strategy is to mark threads that block on an MVar operation as
mortal—when they wake up they will complete the step they were
executing but then terminate rather than continuing the scheduler
loop.

Where schedulers 4 and 7 differ is in their treatment of termina-
tion. When the global task pool runs dry, each worker has a choice
to make. Either spin/sleep or terminate. Scheduler 4 takes the for-
mer approach, scheduler 7 the latter.

Scheduler 4 does not support quiescence. Rather than com-
plete execution before beginning the finalize action, it allows all

worker threads to continue spinning (in a Control.Concurrent.yield

loop) until the finalize action has completed. Once the final action
has succeeded in all its gets, the scheduler can then “kill” the
workers by setting a flag.

Scheduler 7 uses a different strategy. Whenever a worker ob-
serves the task pool in an empty state, it terminates and sends its ID
number back to the scheduler thread through a Chan. (The sched-
uler thread is the one that called runGraph.) By itself, this strategy
creates a different problem—a serial bottleneck will cause work-
ers to shutdown prematurely even if there is another parallel phase
coming (i.e., a currently running step will refill the task pool). To
compensate, scheduler 7 adopts the following method: upon en-
queueing work in the task-pool, if the pool was previously empty,
then reissue any worker-threads that are dead.

Schedulers 4 and 7 retain the same types for tag and item
collections as scheduler 3. However, they add a state transform
monad to store extra state about the graph execution. Below is
the definition for StepCode (and GraphCode is just the same in this
case).

StepCode a =
StepCode (StateT (HiddenState) I0 a)

The implicit state “HiddenState” stores five things:

e the task pool used in this graph execution
e the number of workers for this graph

e the “make worker” function to spawn new threads (given ID as
input)

e the set of “mortal threads”

e the worker ID of the current thread

Scheduler 10: do-it-yourself data synchronization

Scheduler 10 departs from schedulers 4 and 7 by eschewing M Vars
for synchronization, instead aborting a step when a get fails.
Aborted steps are registered in a wait-list on the missing item.
Whenever that item becomes available, steps on the wait-list can
be requeued for execution.

There’s a design choice to be made as to exactly which function
to place on the wait-list. Either (1) the step could be replayed from
the beginning, or (2) its continuation could be captured at the point
of the failed get and the computation resumed from that point
onward. Typically steps acquire their input data before doing any
real work, so the former strategy is not as bad as it sounds. Other

M Var-free Haskell CnC schedulers implement the replay approach,
but scheduler 10 selects the continuation approach.

Scheduler 10 is implemented with a continuation monad trans-
former (ContT), providing a limited form of continuation-passing-
style (CPS) and the ability to capture continuations at the point of
each get. The advantage of monads, in this case, is that they allow
library code to CPS-transform a part of the user’s program, without
modifying the compiler. (Lacking this ability, the C++ implemen-
tation of CnC uses only the replay approach.)

— StepCode in scheduler 10 adds a second monad transformer:
StepCode a = StepCode
(ContT ContResult (StateT (HiddenState) I0) a)

— GraphCode needn’t capture continuations:
GraphCode a =
GraphCode (StateT (HiddenState) IO a)

— Item collections now store wait-lists rather than MVars:
ItemCol a b = ItemCol
(IORef (Map a ((Maybe b), WaitingSteps b)))

Finally, note that work sharing with a global queue should not,
in theory, scale as effectively as work-stealing. We will let the
results speak for themselves, however. With Haskell CnC, we aim
to do a broad empirical comparison of schedulers and to that end to
include a wide range of scheduling strategies.

4.1.3 Spark-based Scheduling

GHC already includes an efficient implementation of work-stealing
for pure computations. Each machine thread maintains a queue of
sparks (7)—thunks which can be stolen and executed in parallel.
The programmer can add to the spark queue using par. Why not
simply create a spark for every step? In the Intel.CncPure imple-
mentation, this can indeed be done. But the IO variants described in
this section have a problem: steps are implemented using 10. One
is then tempted to try the following:

— Incorrect! Don’t do this in Haskell!
runStep ioaction =
par (unsafeDupablePerformI0 ioaction)

There’s a fundamental problem with this. Spark pools in GHC
are lossy. When a spark pool overflows, sparks are dropped. (Worse
yet, in future releases of GHC spark pools may not even serve as
roots for garbage collection.) They represent optional parallelism
and are suitable only for thunks which will be executed on the
forward path of the program with or without parallel steals.

Yet it is still possible to use spark pools to schedule CnC com-
putations implemented with IO. In this subsection we describe an
approach that accomplishes this using Cilk-style nested parallelism.

Scheduler 8: Cilk-Style

In Cilk (5) (an extension of C++), the unit of parallelism is the pro-
cedure. Procedures spawn potentially parallel sub-computations by
annotating sub-procedure calls with cilk_spawn. Before the end of
the caller’s lexical scope a cilk_sync must occur—a barrier, block-
ing on all spawned sub-procedures. The result is a form of strictly
nested parallelism wherein child computations must complete be-
fore the parent call can return.

We take a similar approach here, replacing procedures by CnC
steps. To overcome the problem of dropped sparks, we allow a
step to spark downstream steps but also tuck away those thunks in
the StepCode monad’s state. Thus, irrespective of whether sparked
thunks are stolen, at the end of a step’s execution it flushes its buffer
of child computations by forcing each thunk (serially).

2010/6/20

StepCode a =
StepCode (S.StateT (HiddenState8) IO a)

— The hidden state stores two things:

— (1) "Self”: the current action, if needed for requeueing.

—(2) A list of child tasks/thunks that were spawned in parallel.
HiddenState8 = HiddenState8 (StepCode (), [()])

— In this version we don’t use MVars because gets don’t block:
ItemCol a b = ItemCol
(IORef (Map.Map a ((Maybe b), WaitingSteps)))

Using this infrastructure, the scheduler begins a mostly depth-
first traversal of a CnC graph by simply executing the initialize step.
When the initialize step uses putt to produce tags, downstream
steps are exposed for parallel execution via work stealing. These
downstream steps become the children of the initialize step, and
the initialize step their parent. If no stealing occurs, the graph is
traversed in a depth-first order.

As in scheduler 10, a get operation on an unavailable item ter-
minates the current step and registers it in a wait-list before “return-
ing” to the parent. Thus that step becomes a leaf in the tree-shaped
traversal of the graph. When a step performs a get, on the other
hand, it simply spawns awoken steps as children. Unlike scheduler
10, scheduler 8 uses the replay method, restarting steps from the
beginning when they are rescheduled after blocking on input data.
Moreover, scheduler 8 must use exceptions to escape the current
step at the point of a failed get. (An incomplete “scheduler 9” com-
bines Cilk-style nested parallelism but with the ContT approach of
Scheduler 10.)

Scheduler 8 has a advantage on CnC executions with (dynamic)
step invocations in the shape of a tree. (Intuitively, thieves can steal
entire subtrees rather than single steps as in schedulers 4,7, and 10.)
However, there’s a significant disadvantage as well, which affects
the class of programs supported. The other schedulers described
can all support cyclic graphs. Scheduler 10, in general, cannot—it
will stack overflow. This limitation is ameliorated by an optional
tail_putt variant of putt which can be used to inform the library
that a particular putt is the last action within the enclosing step.

Discussion: Sparks vs. I0 Threads

Note that Haskell applications can simultaneously contain both im-
perative parallelism (IO threads) and pure parallelism (par anno-
tations). In the current GHC runtime, spark-based parallelism is
optional and extra machine threads are only used for sparks if they
are not already executing threads. Therefore, if large numbers of
IO threads are used in the larger application context surrounding a
CnC application, these will prevent the spark-based scheduler from
achieving any parallelism. In the future it may make sense to for
spark-based CnC schedulers to approach resource sharing more ag-
gressively, for example, by explicitly creating worker threads that
call GHC.Conc.runSparks.

4.2 Hash-Tables vs. Various Maps

All (non-Haskell) CnC implementations use some form of hash ta-
ble to represent item collections. In Haskell, we have the choice
of using either mutable data structures (Data.HashTable) or muta-
ble pointers to immutable data structures (Data.Map). But because
Haskell/Hackage do not presently contain a concurrent hash-table
implementation, as of this writing we can only (easily) use hash
tables concurrently via coarse-grained locking on each table. In
our limited tests, we found that even when locking overhead was
omitted, Data.HashTable-based item collections underperformed
Data.Map implementations and we settled on Map-based imple-
mentations for the time being.

Yet there are many improvements to be made to a basic
Data.Map implementation. In particular, the Haskell CnC distri-
bution includes its own implementation of “generic maps” (GMap)
using indexed type families. GMaps can take on different physi-
cal representations based on their key types (and potentially value
types as well). All key types must provide an instance of the class
GMapKey, a simplified version of which follows:

— A simplified class GMapKey

GMapKey t
GMap t :: * — *
empty :: GMap t v
lookup :: t — GMap t v — Maybe v

We can then define instances for each different key type we
are interested in. For example, Data.IntMap is more efficient than
Data.Map when keys are integers. Also, pair-keys can be decon-
structed and represented using nested maps. Likewise, Eithers,
Bools, and unit key types also have specialized implementations.

The problem with this approach is that GMaps are not a drop-
in replacement for Data.Map. The user would have to be aware
that item collections are implemented as GMaps and define their
own GMapKey instances. They are not derivable, and have no
“fallthrough” for index types that satisfy 0rd but do not have ex-
plicit GMapKey instances defined. Such a fallthrough would con-
stitute an overlapping instance with the specialized versions. The
language extension OverlappingInstances permits overlaps for
regular type classes, but not for indexed type families.

Fortunately there is a work-around for this type-checking limi-
tation, suggested by Oleg Kiselyov on the Haskell-cafe mailing list.
The idea is to use an auxiliary type class to first classify a given key
type, and then dispatch on it (without overlaps) in the indexed type
family. The “categories” are represented by newtypes, and might
include things like PairType or EitherType, but here we consider
only two categories: those types that can be packed into a single
word, and those that cannot.

— We will classify types into the following categories
PackedRepr t = PR t (Eq,0rd, Show)
BoringRepr t = BR t (Eq,0rd, Show)

Next, we assume a class FitInWord that captures types that can be
packed into a machine word. (Template Haskell would be useful
for generating all tuples of scalars that share this property, but this
is not yet implemented.)

FitInWord v
toWord
fromWord ::

: v — Word
Word — v

— Example: Two Int16’s fit in a word:
fI x = fromIntegral x
FitInWord (Int16,Int16)
toWord (a,b) = shiftL (fI a) 16 + (fI b)
fromWord n = (fI$ shiftR n 16,
fI$ n .&. OxFFFF)

Next, we introduce the class ChooseRepr, which permits overlap-
ping instances and does the “classification”. We generate an in-
stance for every instance in FitInWord that selects the packed rep-
resentation.

2010/6/20

— Auxiliary class to choose the appropriate category:
ChooseRepr a b | a — Db

choose_repr

choosen_repr ::

:ta — b
b — a

— Choose a specialized representation:
ChooseRepr (Int16,Int16)
(PackedRepr (Int16,Int16))
choose_repr = PR
choosen_repr (PR p) = p

— Fall through to the default representation:
(c ~ BoringRepr a) =) ChooseRepr a c
choose_repr = BR
choosen_repr (BR p) = p

Finally, it is now possible to create non-overlapping instances of
GMapKey that use IntMaps where applicable and Maps otherwise.

Data.IntMap IM
Data.Map Map

— For PackedRepr we pack the key into a word:
FitInWord t =) GMapKey (PackedRepr t)
GMap (PackedRepr t) v = GMapInt (IM.IntMap v)
empty = GMapInt IM.empty

lookup (PR k) (GMapInt m) = IM.lookup (fI$ toWord k) m

— For BoringRepr we use Data.Map:
0rd t =) GMapKey (BoringRepr t)
GMap (BoringRepr t) v = GMapBR (Map.Map t v)
empty = GMapBR Map.empty
lookup (BR k) (GMapBR m) = Map.lookup k m

Pick Your Atomic Variable

Finally, another basic data structure trade-off is in what mutable
pointer type to use to accomplish atomic updates. In our implemen-
tation we currently include a toggle to select between TVars, MVars,
and I0Refs for all “hot” mutable variables in the CnC implemen-
tation. We reach the same conclusion as previous authors (18), and
select TVars by default.

4.3 Problems and solutions in GHC parallel performance

In short, Haskell CnC performs terribly with version 6.12 of
GHC and quite well with the current development version (as of
06/10/2010). The key issue was the handling of “BLACKHOLE”
objects used to synchronize when multiple threads try to evaluate
the same thunk. We will return to this issue to quantify the impacts
of the new BLACKHOLE architecture in Section [3] but first we
discuss the structure of the problem and its solution.

Ultimately, we believe targeting new, high-level parallel abtrac-
tions (like CnC) to GHC is a mutually beneficial prospect, as ev-
idenced by Haskell CnC (1) highlighting these performance prob-
lems, (2) validating the new BLACKHOLE architecture, and (3)
uncovering a GHC parallel runtime deadlock bug in the process!

Blocking and lazy evaluation in GHC

Lazy evaluation presents an interesting challenge for multicore ex-
ecution. The heap contains nodes that represent suspended com-
putations (thunks), and in a shared heap system such as GHC it
is possible that multiple processors may try to evaluate the same
thunk simultaneously, leaving the runtime system to manage the
contention somehow.

Fortunately, all suspended computations are pureﬂ S0 a given
thunk will always evaluate to the same value. Hence we can allow
multiple processors to evaluate a thunk without any ill effects,
although if the computation is expensive we may wish to curtail
unnecessary duplication of work. It comes down to finding the right
balance between synchronisation and work duplication: preventing
all work duplication entails excessive synchronisation costs (7)), but
reducing the synchronization overhead may lead to too much work
duplication.

The GHC RTS takes a relaxed approach: by default duplication
is not prevented, but at regular intervals (a context switch) the run-
time takes a lock on each of the thunks under evaluation by the
current thread. The lock is applied by replacing the thunk with a
BLACKHOLE object; any other thread attempting to evaluate the
thunk will then discover the BLACKHOLE and block until evalu-
ation is complete. This technique means that we avoid expensive
synchronisation in the common case, while preventing arbitrary
amounts of duplicate work.

It is important for the blocking mechanism to be efficient: ide-
ally we would like to have no latency between a thunk completing
evaluation and the threads that are blocked on it becoming runnable
again. This entails being able to find the blocked threads corre-
sponding to a particular BLACKHOLE. Unfortunately, due to the
possibility of race conditions when replacing thunks with BLACK-
HOLE:s, it was not possible in GHC to attach a list of blocked
threads to a BLACKHOLE, so we kept all the blocked threads on
a separate global linked list. The list was checked periodically for
threads to wake up, but the linear list meant that the cost of check-
ing was O(n), which for large n became a bottleneck.

This issue turned out to be important for the CnC implementa-
tion. An item collection is essentially a shared mutable data struc-
ture, implemented as a mutable reference in which an immutable
value (the mapping from keys to values) is stored. In many cases,
the contents of the reference is either unevaluated (a thunk) or par-
tially evaluated, and since the reference is shared by many threads,
there is a good chance that one of the threads will lock a thunk and
block all the others, leading to at best sequentialisation, and at worst
a drastic slowdown due to the linear queue of blocked threads. We
observed this effect with some of the CnC benchmarks: often the
benchmark would run well, but sometimes it would run a factor of
2 or more slower.

Noticing that the blocking scheme was becoming a bottleneck
in certain scenarios, the GHC developers embarked on a redesign
of this part of the runtime in GHC. We defer a detailed description
of the new scheme for future work, but the key ideas can be
summarized as:

e A BLACKHOLE refers to the owning thread.

e Blocking is based around message passing; when blocking on a
BLACKHOLE, a message is sent to the owning thread.

e The owner of a BLACKHOLE is responsible for keeping track
of threads blocked on each BLACKHOLE, and for waking up
threads when the BLACKHOLE is evaluated.

Together with some careful handling of race conditions, this
scheme leads to a much more efficient and scalable handling of
blocked threads. A blocked thread will be woken up promptly as
soon as the thunk it was blocked on is evaluated. Since the owner
of a BLACKHOLE can be identified, the scheduler can give extra
runtime to the owner so as to clear the blockage quickly.

4 except for applications of unsafePerformI0, which present interesting

problems. A full discussion is out of scope for this paper, however.

2010/6/20

blackscholes | cholesky | mandel | primes | threadring
C++ 293 390 147 84 63
Haskell 90 158 51 29 28

Table 1. A table comparing non-comment, non-blank lines of code
in C++/CnC benchmarks and Haskell CnC. A 64% reduction in size
is achieved on average, in large part by reducing type-definition and
boilerplate code.

Following the implementation of the new scheme, we noticed
significant improvements in many of the Concurrent Collections
benchmarks (Section[5).

5. Evaluation

In this section we look at parallel speedups achieved on seven
benchmarks. We measure the impacts of the implementation
choices described in Section 4] Most of the benchmarks below are
direct ports of their counterparts included the distribution package
for the C++ version of CnC (see Table[T).

¢ Black-Scholes — a differential equation used in finance that de-
scribes how, under a certain set of assumptions, the value of
an option changes as the price of the underlying asset changes.
This benchmark achieved a maximum speedup of 18.4X (Fig-
ure[7)).

Cholesky Decomposition — an algorithm in linear algebra that
factors a symmetric, positive definite matrix A into L L+ where
L is a lower triangular matrix and Lx its conjugate transpose.
Cholesky was the largest of the benchmarks we ported (see
Table[T). Cholesky was sped up by a factor of 3.14 on a four-
core machine (Figure[d).

N-body problem — quadratic algorithm to compute accelera-
tions on N bodies in 3D space. Maximum speedup achieved
was 22.1X over single threaded execution (Figure[6).

Mandelbrot — compute each pixel of a Mandelbrot fractal in
parallel. Max speedup was 11.8X (Figure5).

Primes — naive primality test in parallel. Max speedup was
25.5X.

“Embarassingly parallel” — simplistic microbenchmark that
performs arithmetic in a tight loop on each of N tasks for
exactly N cores. We also discuss a variant with alternating
parallel and serial stages (Figure[I0).

“sched_tree” — a benchmark that, like the traditional “parfib”
benchmark, computes near-empty tasks in a tree topology.

Experimental setup: We evaluate on three platforms: (1) Desktop,
a 3.33 GHz quad-core Core i7, Nehalem architecture; (2) Intel
Server, a 32-core platform consisting of four 2.27 GHz 8-core
processors, Westmere architecture; and finally, (3) AMD Server, a
48-core system containing eight 6-core Istanbul processors running
at 2.4 GHz.

GHC 6.12 Results: Our first measurements on 6.12 (Desktop)
were all over the map—no speedup on N-body, only meager
speedups on mandel (2.3X) and primes (1.5X, see Figure [3). Fur-
ther, hyperthreading caused a total collapse in performance. Even
embarassingly parallel was showing spurious serializations where
one of N tasks would run in serial before branching out to other
threads.

GHC Development Version Results: Switching to the develop-
ment version of GHC immediately brought mandel and primes (two
benchmarks with relatively large numbers of steps) up to 2.82X

Benchmark: primes2, speedup relative to serial time 8.19 seconds
1.6

T T T T T T
10/3 me— H

io/5 £

io/6 £
L4+ o8
pure/2

12 &% R 1

0.8

Parallel Speedup

0.6

04 -

02 -

Number of Threads

Figure 3. Undesirable parallel speedup results under GHC 6.12.1,
Desktop configuration. Schedulers are denoted “io/4” for IO-based
scheduler number 4. Five runs per data-point, error bars represent-
ing min and max execution time. The data-points at “8-threads”
represent hyper-threading. Likewise, zero on the X-axis refers to
building the application without -threaded.

heap MB | N-body: time / collects | Black-Scholes: time / collects
10 8.9s /6705 1.63s /716
100 6.3s /1080 1.63s /574
250 6.23s /421 2.1s /387
500 6.2s /211 2.96s /386
1,000 6.2s /103 5.29s /386
10,000 9.45s /14 93.5s /386
100,000 44s /5

Table 2. The effects of suggested heap size (-H) on parallel per-
formance (32 threads) and number of collections—different right
answers for different benchmarks. All benchmarks slow down at
massive heap sizes (we tested up to 110 gigabytes), but /N-body
increases in performance up to S00M, whereas Black-Scholes, for
example, peaks much earlier and is suboptimal at heap size S00M.

and 3.64X speedup, respectively. This improvement is due to the
new BLACKHOLE architecture (Section f.3), which we verified
by rewinding to exactly before and exactly after that patch to the
compiler.

This change greatly improved our parallel performance overall,
but there still remain quirks and unpredictable outcomes, as illus-
trated by Figure 9] One source of especially quirky behavior are
loops that run for a long stretch without allocating. These threads
cannot yield until they allocate, and other threads may end up wait-
ing on them to initiate a global garbage collection.

GMaps: Again, tracking mandel and primes, the speedups im-
proved to 3.19X and 3.69X, respectively, after adding GMaps. Both
mandel and primes can benefit from Data. IntMap-based item col-
lections.

TVars: Switching from IORefs to TVars for hot variables (with
atomic operations) improves the aforementioned speedup to 3.31X
and 3.76X, respectively.

2010/6/20

Benchmark: Cholesky, speedup relative to serial time 28.25 seconds

Benchmark: N-body, speedup relative to serial time 132.1 seconds

35 - T T T T T 25 - T T T T T
i0/3 m— i0/3 m—
iol4 iol4
io/7 io/7
io/8 io/8
3 io/10 io/10
pure/2 s 20 F 4
25
2 5 st]
o o
o 1
-3 %
2] 2]
e} e}
8 8
£ £ oa0f 1
5 i
e
| | | 0 | | | | | |
25 3 35 4 0 5 10 15 20 25 30 35
Number of Threads Number of Threads
Figure 4. Cholesky benchmark, Desktop configuration. Figure 6. N-body benchmark, Intel Server.
Benchmark: Mandelbrot (opt2), speedup relative to serial time 36.67 seconds Benchmark: Black-Scholes, speedup relative to serial time 30.23 seconds
9 T T 20
i0/3 == i0/3 m—— T
i0/4 =mmmuns
8 1 18 io/7 —
io/8
pure/2 T Bl T sl io/l/g |
7 /3 : B pure/
pure; pure/3 s
6l | 14 q
o
3 S 12t E
g st | 2
-4 o]
& o
- O 10 4
o} 2
s 4f 1 5
g g
a g 8 b
3k i
6 i
2k i
4+ 4
1¢e q 5L]
0 | | | |))

| |
0 5 10 15 20 25 30 35
Number of Threads

Figure 5. Mandelbrot benchmark, Intel Server.

The effects of garbage collection

The architecture of the garbage collector (GC) is the primary bar-
rier to scaling parallelism to larger numbers of cores. At the time
of writing, GHC is using a stop-the-world parallel garbage collec-
tor in which each processor has a separate nursery (allocation
area). The garbage collector optimizes locality by having proces-
sors trace local roots during parallel GC and by not load-balancing
the GC of young-generation collections (12)), and this strategy has
resulted in reasonable scaling on small numbers of processors.
However, the stop-the-world aspect of the garbage collector
remains the most significant bottleneck to scaling. The nurseries
have to be kept small (around the L2 cache size) in order to benefit
from the cache, but small nurseries entail a high rate of young-
generation collections. With each collection requiring an all-core
synchronization, this quickly becomes a bottleneck, especially in
programs that allocate a lot. Hence, the most effective way to

| |
0 5 10 15 20 25 30 35
Number of Threads

Figure 7. Black-Scholes benchmark, Intel Server.

improve scaling in the context of the current architecture is to tune
the program to reduce its rate of allocation; we found this to be
critical in some cases.

This locality trade-off means that the common technique of
increasing the heap size to decrease the overall GC overhead often
doesn’t work. As shown in Table [2} the best selection for one
benchmark can do badly on another. (All our results from other
figures are reported without any per-benchmark tuning parameters,
heap-size or otherwise.)

In the future, the GHC developers hope to modify the garbage
collector to allow individual processors to collect their own local
heaps without synchronizing with the other processors, and this
should give a significant boost to scaling.

It is difficult to predict the interaction of the heap size, sched-
uler, and a CnC program. For example, the Mandelbrot benchmark
on Intel Server: using a 10G heap did not significantly lessen the

2010/6/20

Benchmark: sched tree, speedup relative to serial time 28.23 seconds

24 T T T T T T
i0/3 m——e

io/4

22 o7

io/8

io/10

Parallel Speedup
N
S
T

0.8

0.6

0.4 \ ‘ ‘ B
0 5 10 15 % po

Number of Threads

35

Benchmark: Embarrassingly Parallel, speedup relative to serial time 47.14 seconds
50

i0/3

45

40 g

35 q

Parallel Speedup

20 25 30 35 40 45 50
Number of Threads

Figure 8. Sched_tree benchmark, Intel Server. We would not ex-
pect global task-pool based schedulers to do well. But scheduler 8
should be doing better.

performance (with one thread or 32) for all schedulers except num-
ber 3, where the larger heap size had a catastrophic effect. (It be-
came 2X slower in the serial case, 15.8X slower in the 32-thread
case.)

Detailed Benchmark Discussion

As usual, benchmark performance is largely a measure of effort
spent improving and tuning a given implementation. We try to
report accurately the degree of implementation effort invested in
these benchmarks. Granularity of computation is a universal prob-
lem in parallel scheduling. Black-Scholes and Cholesky, ported
from C++ already had a blocked structure, wherein steps, rather
than operating on individual elements, process batches of elements
of a configurable size, thus solving the granularity problem but re-
quiring manual tuning of block size. Neither of these benchmarks
was modified substantially after the initial port. Black-Scholes per-
formed well from the start, but Cholesky is much more unpre-
dictable. It achieves speedups on the Desktop configuration, but
not at all on either server configuration with the same matrix and
tile size. At larger matrix sizes, Cholesky could show an extremely
modest (less than 4X) speedup on the server configurations.

It is easy to write programs whose step granularity is too small,
or allocation rate is too high, to get any parallel speedup whatsoever
(or worse, dramatic and unpredictable slowdown), in spite of a
large amount of parallelism being exposed. Requiring some support
for user control of granularity is typical of systems that rely on
dynamic scheduling (e.g. TBB (4)) as opposed to static scheduling
(e.g. StreamlIT (6)).

But, in addition to granularity, allocation and garbage collec-
tion bring a second complication to bear. Many of these bench-
marks have fairly high allocation rates. Mandelbrot, primes, Black-
Scholes, Cholesky and N-body all produce output of the same
size as their input—by allocating arrays or individual items within
the steps. N-body, when first ported, achieved no speedup (ex-
cept modestly under Intel.CncPure). It allocated two gigabytes
over a 2.5 second execution. N-body’s inner loop for each body
sums over the other bodies in the system to compute an acceler-
ation. This loop was written in idiomatic Haskell (over lists), and
while the lists were being deforested, the tuples were not being un-

Figure 9. Detailed speedup results: embarrassingly parallel bench-
mark, all schedulers (AMD Server). ‘“Zig-zags” are indicative of
remaining problems, especially with allocation-free loops.

boxed/eliminated. After manually inlining the loops, deforesting,
and unpacking the tuple loop-state, /N-body’s allocation decreased
by a mere 25% and yet it started achieving excellent speedups. This
is indicative of the kinds of sensitivities in parallel performance
given the state of the tools at this moment.

Finally, we include a simple microbenchmark, “sched._tree”,
similar to the “parfib” benchmark used elsewhere in the literature.
Sched_tree generates a tree of step invocations. A system like Cilk
can achieve linear speedup on such a benchmark, but we had
no such success (Figure @), even with scheduler 8, which should
have worked performing only a constant number of steals. In fact,
scheduler 8, while being the conceptually most promising and (in
principle) scalable scheduler, was a flop. This could perhaps be due
to the use of exceptions to escape step executions, or to some other
bottleneck we’ve yet to identify.

One reason a range of implementations is useful here is that our
intuitions have been so far off. As another example, scheduler 10
was supposed to be substantially more efficient than other task-pool
based schedulers that use MVars. And while it did well some of the
time, other times it lagged behind, as in N-body (Figure |§[)

Notes on parameters and tuning

We experimented systematically with some runtime parameters and
informally with others. The GHC runtime can optionally make use
of the OS’s affinity APIs to pin threads to particular cores (the -qa
flag), and we found that this consistently helped performance.

The -qb flag disables load balancing within parallel garbage
collections (aiding some parallel programs). But across our bench-
mark suite, enabling the flag results in a geometric mean slow-down
of 23% (measured by the best wall-clock time achieved for each
benchmark under any number of threads).

6. Discussion and Related Work

CnC is situated in a landscape of graph-based computational mod-
els. These include data-flow, stream processing, task graphs, actors,
agents, and process networks. These models appear in disparate
parts of computer science ranging from databases to graphics to
cluster computing, leading to many divergent terminologies. For

2010/6/20

Benchmark: par seq par seq, speedup relative to serial time 94.75 seconds
25

T T T T T T T T
10/3 —

io/4
iol7 o
i0/8

Parallel Speedup

0 5 10 15 20 25 30 35 40 45 50
Number of Threads

Figure 10. “Par_seq” variant of embarrassingly parallel bench-
mark, AMD Server. This benchmark alternates serial and embarass-
ingly parallel phases of computation. It is the one benchmark where
scheduler 3 does relatively well on parallel speedup. It shows the
importance of task fopology in determining scheduler performance.

Set of nodes e dynamic, e static

Edge data rates e dynamic, e static

Nodes e processes, ® stateless tasks, o stateful tasks

Node/edge o read all inbound edges at once
synchronization: e read edges in deterministic order
e read edges in nondeterministic order
(event-driven / asynchronous)

Table 3. Major choices to build-your-own graph-based model.

our purposes, a graph-based computational model is one in which
message-passing along defined channels (edges) is the only form of
communication between separate computations (nodes). We sum-
marize some of the basic design choices in Table[3]

First, the nodes of a computation graph may be either continu-
ously running processes or discrete tasks that execute for a finite
duration after receiving data on incoming edges. Discrete tasks
may or may not maintain state between invocations. The set of
tasks may be known statically, as in synchronous data-flow (10) and
“task scheduling” (17), or change dynamically (as in most stream-
ing databases (1))).

Stream processing systems typically have ordered edges and
statically known graph topologies. Generally, they allow both state-
ful and stateless tasks (the later providing data parallelism). They
may be based on synchronous data-flow (e.g. Streamlt (6)) and
have known edge data-rates, or dynamic rates (e.g. WaveScope
u4)).

A key choice is how nodes with multiple inbound edges com-
bine data. They can, for example, read a constant number of mes-
sages from each inbound edge during every node execution (SDF).
Alternatively, edges can be read in an input-dependent but deter-
ministic order (e.g. Kahn networks (2))). Or, finally, edges can be
processed by a node in a nondeterministic order, as when handling
real time events or interrupts (e.g. WaveScope and most streaming
databases).

In contrast with these systems, CnC has unordered communica-
tion channels (carrying tags) and stateless tasks (steps). (Unordered
channels with stateful tasks would be a recipe for nondeterminism.)
CnC also has item collections. In a purely message-passing frame-
work, item collections can be modeled as stateful tasks that are con-
nected to step nodes via ordered edges that carry put, get, and get-
response messages. That is, a producer task sends a put message to
the item collection and a consumer task first sends a get message
and then blocks on receipt of a value on the response edge. The
edges must be ordered to match up get requests and responses.
This also requires a formulation of steps that allows them, once ini-
tiated, to synchronously read data from other incoming edges. Thus
CnC can be modeled as a hybrid system with two kinds of edges
and two kinds of nodes.

In addition to the above mentioned systems, there are many less
obviously related precedents as well, including graphical workflow
toolkits (such as Labview and Matlab Simulink) and Linda/Tuple-
spaces. Also, the functional programming literature includes sev-
eral projects that explore the connection between functional pro-
gramming, stream processing, and synchronous data-flow (35 [16),
but not all projects have achieved (or aimed for) effective parallel
performance.

7. Conclusion and Future Work

With a modest amount of tweaking we have been able to get
significant parallel performance out of Haskell CnC benchmark
applications. CnC makes it easy to write parallel programs, but
performance predictability remains a key issue. Fortunately, there
are already several changes on the horizon which will help the
situation.

Our implementation has benefited from a series of improve-
ments described in this paper. There remain a number of low-
hanging fruit, however, in terms of increasing the performance
of Haskell CnC. In the future we (or others—the project is open
source) will look at using other data structures such as Data.Judy
arrays as candidate item collections. Also, we are far from the last
word on scheduling. If spark-based schedulers cannot be made to
perform as desired, it may be necessary to create our own work
stealing deque, or find a way to reuse the one present inside GHC’s
RTS.

References

[1] D. Carney, U. Cetintemel, M. Cherniak, C. Convey, S. Lee, G. Seid-
man, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams—
a new class of data management applications. In VLDB, 2002.

[2

—

Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti,
Florence Plateau, and Marc Pouzet. N-synchronous kahn networks:
a relaxed model of synchrony for real-time systems. In POPL '06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 180-193, New York,
NY, USA, 2006. ACM.

Jean-Louis Colago, Alain Girault, Grégoire Hamon, and Marc Pouzet.
Towards a Higher-order Synchronous Data-flow Language. In
ACM Fourth International Conference on Embedded Software (EM-
SOFT’04), Pisa, Italy, September 2004.

Intel Corporation. Intel(R) Threading Building Blocks reference man-
ual. Document Number 315415-002US, 2009.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The im-
plementation of the Cilk-5 multithreaded language. In Proceedings
of PLDI’98, ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 212-223, 1998.

,_
(98]
[t

[4

=

[5

[t}

[6] M. I. Gordon et al. Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In ASPLOS-XII: Proceedings of the
12th international conference on Architectural support for program-

2010/6/20

ming languages and operating systems, pages 151-162, New York,
NY, USA, 2006. ACM.

Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a
shared-memory multiprocessor. In Haskell '05: Proceedings of the
2005 ACM SIGPLAN workshop on Haskell, pages 49-61. ACM Press,
September 2005.

Intel Corporation. Intel Concurrent Collections Web-

site. http://software.intel.com/en-us/articles/
intel-concurrent-collections-for-cc/.

—
;‘

[8

—

[9] Manjunath Kudlur and Scott Mahlke. Orchestrating the execution of
stream programs on multicore platforms. SIGPLAN Not., 43(6):114—

124, 2008.

Edward Ashford Lee and David G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal processing. [EEE
Trans. Comput., 36(1):24-35, 1987.

[11] Simon Marlow, Tim Harris, Roshan P. James, and Simon Peyton
Jones. Parallel generational-copying garbage collection with a block-
structured heap. In ISMM '08: Proceedings of the 7th international
symposium on Memory management. ACM, June 2008.

—

[10

[12] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime
support for multicore haskell. In ICFP ’09: Proceeding of the 14th
ACM SIGPLAN international conference on Functional programming,
August 2009.

[13] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idem-
potent work stealing. In PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 45-54, New York, NY, USA, 2009. ACM.

[14] Ryan R. Newton, Lewis D. Girod, Michael B. Craig, Samuel R. Mad-
den, and John Gregory Morrisett. Design and evaluation of a compiler
for embedded stream programs. In LCTES ’'08: Proceedings of the
2008 ACM SIGPLAN-SIGBED conference on Languages, compilers,
and tools for embedded systems, pages 131-140, New York, NY, USA,
2008. ACM.

[15] NVIDIA. CUDA reference manual. Version 2.3, 2009.

[16] John Peterson, Valery Trifonov, and Andrei Serjantov. Parallel func-
tional reactive programming. In PADL ’00: Proceedings of the Sec-
ond International Workshop on Practical Aspects of Declarative Lan-
guages, pages 16-31, London, UK, 2000. Springer-Verlag.

[17] Oliver Sinnen. Task Scheduling for Parallel Systems (Wiley Series on
Parallel and Distributed Computing). Wiley-Interscience, 2007.

[18] Martin Sulzmann, Edmund S.L. Lam, and Simon Marlow. Comparing
the performance of concurrent linked-list implementations in haskell.
SIGPLAN Not., 44(5):11-20, 2009.

[19] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones.
Algorithm + strategy = parallelism. J. Funct. Program., 8(1):23-60,
1998.

[20] Tarmo Uustalu and Varmo Vene. Comonadic notions of computation.
Electron. Notes Theor. Comput. Sci., 203(5):263-284, 2008.

2010/6/20

http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/

	Introduction
	The CnC Model
	Haskell CnC
	Haskell CnC API
	Going further

	Implementation
	Runtime Schedulers
	IO Threads (Scheduler 3)
	Global task pool (Schedulers 4,7,10)
	Spark-based Scheduling

	Hash-Tables vs. Various Maps
	Problems and solutions in GHC parallel performance

	Evaluation
	Discussion and Related Work
	Conclusion and Future Work

