
An Extensible Dynamically-Typed Hierarchy of Exceptions

Simon Marlow
Microsoft Research

simonmar@microsoft.com

Abstract

In this paper we address the lack of extensibility of the exception
type in Haskell. We propose a lightweight solution involving the
use of existential types and the Typeable class only, and show
how our solution allows a fully extensible hierarchy of exception
types to be declared, in which a single overloaded catch operator
can be used to catch either specific exception types, or exceptions
belonging to any subclass in the hierarchy. We also show how to
combine the existing object-oriented framework OOHaskell with
our design, such that OOHaskell objects can be thrown and caught
as exceptions, with full support for implicit OOHaskell subtyping
in the catch operator.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.3 [Language Constructs and Fea-
tures]: Data Types and Structures

General Terms Languages, Design

Keywords Haskell, Exceptions

1. Introduction

Exceptions have been evolving in the context of Haskell since
their introduction in Haskell 1.3. We start with a brief history of
exceptions in Haskell.

Haskell 1.3 introduced monadic IO, and with it, the means for
exceptions to be thrown and caught within the IO monad, and this
interface to exceptions carried through into Haskell 98. Exceptions
have the type IOError, are thrown using ioError, and caught
using catch. The IOError type is abstract; the standard only
specifies a selection of predicates and projections over it, and there
isn’t even a way to construct an IOError (although nowadasys
compilers do provide a standard way to do this). The abstract
IOError type means that an implementation is free to extend the
range of errors represented by IOError, although library code
cannot.

Imprecise exceptions [10], and later also asynchronous excep-
tions [7] were introduced in GHC. The interface provided by GHC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’06 September 17, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-489-8/06/0009. . . $5.00.

went through several iterations, finally ending up with what we
have now; there is a fixed datatype Exception:

data Exception
= ArithException ArithException
| IOException IOException
| PatternMatchFail String
| UserError String
| ...

Exception encodes all the possible exceptions that the sys-
tem knows about. In particular, Exception subsumes IOError
(IOException is a type synonym for IOError). There is a library
Control.Exception that provides the means to throw and catch
exceptions:

throw :: Exception -> a
catch :: IO a -> (Exception -> IO a) -> IO a

The obvious problem with this formulation is that the Exception
type is not extensible at all: there is no way for library code or
programs to extend the range of exceptions with their own types.
Haskell 98’s IOError type is designed to be extensible by an
implementation: the standard does not specify the type concretely,
but rather specifies a number of predicates and projections on it,
but this is insufficient to allow arbitrary library code to extend the
IOError type with its own exceptions.

As a result, today we often see library code that simply throws
UserError exceptions for errors, or worse, just calls error. Users
of these libraries have no way to reliably catch and handle these
exceptions, and there is no documentation, aside from the source
code of the library, to indicate which kinds of exception may be
thrown.

There are two ways commonly used to work around this defi-
ciency. Firstly, we can serialise the exception value that we want
to throw as a String, and use the UserError exception to trans-
port it. All we need to do is make sure the type we want to
throw is an instance of Show and Read, and we can throw it using
throw (UserError (show x)). To catch it, we could provide
our own catching function:

catchMyType :: IO a -> (MyType -> IO a) -> IO a
catchMyType io handler =
io ‘catch‘ \e ->

case e of
UserError s -> case reads s of

[(x,"")] -> handler x
_ -> throw e

_ -> throw e

If the String successfully parses using the Read instance for the
type we are looking for, then the supplied handler is invoked,
otherwise the exception is re-thrown.

This approach suffers from several problems:

• defining Show and Read instances isn’t always possible (for
example when the type contains functions),

• the Show instance for this type must be unique, that is we won’t
mistake another type for our type,

• serialising/deserialising via String is unnecessarily slow.

• The extra code generated by deriving Show and Read instances
is not insignificant, and might not otherwise be required.

Encoding arbitrary types as Strings is just a poor man’s version of
dynamic typing. So the second approach to allowing arbitrary types
to be thrown and caught is to use real dynamic types, as provided
by the Typeable class [5]. The Exception type already contains
a DynException constructor for this purpose:

data Exception = ... | DynException Dynamic | ...

throwDyn :: (Typeable ex) => ex -> b

catchDyn :: (Typeable ex)
=> IO a
-> (ex -> IO a)
-> IO a

So as long as our type is an instance of Typeable (which can be
derived for arbitrary types in GHC), we can throw and catch it
using throwDyn and catchDyn respectively. This works, but the
interface is a little clunky to say the least. The programmer has to
decide whether to use throwDyn and catchDyn versus plain throw
and catch based on whether the exception is a built-in one or not.

Moreover, we still cannot extend, say, the range of IO exceptions or
the range of arithmetic exceptions: it should be possible to write an
exception handler that catches all IO exceptions, even the as-yet-
unknown ones.

Contrast the above solutions with what is typically provided by
an object oriented language such as Java. There is an Exception
class, which has a number of subclasses for categories of excep-
tions (IOException, RuntimeException, and so on). User code
and libraries can extend the hierarchy at will, simply by declaring
a new class to be a subclass of an existing class in the Exception
hierarchy. Java has dynamic typing and subtyping built-in, in the
sense that you can ask whether a given object is an instance of a
particular class (a downcast), so catching an exception can check
whether an exception being caught is a member of the new class.

To sum up the requirements, we would like our exception library to
provide:

• A hierarchy of exception types, such that a particular catch
can choose to catch only exceptions that belong to a particular
subclass and re-throw all others.

• A way to add new exception types at any point in the hierarchy
from library or program code.

• The boilerplate code required to add a new type to the exception
hierarchy should be minimal.

• Exceptions should be thrown and caught using the same primi-
tives, regardless of the types involved.

Efficiency is not a priority, since we expect exceptions to be used
for erroneous conditions rather than as a general mechanism for
control flow.

The main contribution of this paper is to describe a lightweight
solution that meets the above requirements and more. The code for
the core of the library is entirely contained in Sections 2 and 3.
An intermediate Haskell programmer should be able to grasp the
details of the implementation without too much difficulty, and a
beginner could easily follow the patterns and extend the exception
hierarchy themselves.

We will discuss related work in detail in Section 8, but it is worth
briefly putting this work in context first. Exceptions are one place
where Haskell’s choice of algebraic data types and polymorphism,
as opposed to classes and subtyping, does not yield a natural way
to express the interface we desire. For exceptions, we need the
data to be extensible, whereas in Haskell typically the data is
fixed, and the range of functions is extensible. In constrast, object-
oriented languages emphasize extensible data with a fixed range
of operations (this insight comes from the O’Haskell rationale
page [9], although it has doubtless been expressed elsewhere). In
both settings there are techniques for working around the respective
limitations. This paper can be seen as exploring a solution to the
problem of expressing an object-oriented-style API in the context
of Haskell, albeit a very special-purpose API, namely exceptions.

For a good survey of the known techniques for encoding subtyping
hierarchies in Haskell see the OOHaskell1 paper [4]. The require-
ments of exceptions are slightly unusual however, in that the catch
operator needs to perform a dynamic downcast; oddly enough, al-
though the OOHaskell paper does describe various techniques for
downcasting, none of them applies in this setting. Furthermore, in
this paper we are aiming for a lightweight solution to the problem,
and OOHaskell comes with an elaborate type-level-programming
framework that seems overkill for exceptions. Nevertheless, it is in-
teresting to investigate whether OOHaskell objects can be thrown
and caught as exceptions, while retaining the subtyping properties
that OOHaskell provides. We appreciate that some users will want
to do just that; the full story is given in Section 7.

To give a feel for the kind of facilities that our proposal provides,
there follows a few examples of our library in use. The examples
are taken directly from a GHCi session, except that the normally-
long prompt has been replaced by >, and some extra newlines have
been added to fit the code into the column.

Firstly, we can throw any exception using the throw primitive, and
catch it again using catch:

> :t DivideByZero
DivideByZero :: DivideByZero
> throw DivideByZero

‘catch‘ \(e::DivideByZero) -> print "caught"
"caught"

The type of the handler determines which exceptions are caught; if
an exception is not of the desired type, it is not caught and is passed
up to the next enclosing catch. For example, a DivideByZero will
not be caught by a handler looking for the end-of-file exception, but
it will be caught by a handler looking for any exception2:

1 not to be confused with O’Haskell
2 infix ‘catch‘ is defined to be left-associative

> throw DivideByZero
‘catch‘ (\(e::EOF) -> print "caught EOF")
‘catch‘ (\(e::SomeException) -> print "other")

"other"

Exceptions are structured in a hierarchy, so it is possible to match
classes of exceptions. For example, DivideByZero is an arithmetic
exception:

> throw DivideByZero
‘catch‘ \(e::SomeArithException) ->

print "caught"
"caught"

The exception hierarchy is fully extensible: new exception types
can be added to an existing node in the hierarchy easily (less than 5
lines of code per type), and new nodes can be added to the hierarchy
(about 10 lines per node). We show how to do this later in the paper.

Finally, we can catch several kinds of exception with a single
handler:

e ‘catches‘ [
Catch $ \(x::DivideByZero) -> print x,
Catch $ \(x::SomeIOException) -> print x

]

The code presented in this paper requires two extensions to Haskell
98: existential types, and the Data.Typeable library. Both are
well-understood and implemented by the major compilers, and both
are likely to be in the next revision of the Haskell language.

For convenience only, we use several more Haskell extensions in
this paper. These aren’t fundamental to the design of the library,
although they make using it easier. They are: scoped type variables
(for putting type signatures on patterns), deriving the Typeable
class, generalised deriving for newtypes, and pattern guards. All of
these are also likely to be in the next revision of Haskell.

2. An extensible class of exceptions

Haskell already has a fine mechanism for defining open-ended
extensible sets of types, namely type classes. Let us start, then, by
making an extensible set of exceptions, and then proceed to extend
it to a hierarchy.

First, we define a class of exception types, Exception:

class (Typeable a, Show a) => Exception a

The Exception class has no methods; it is really just a synonym
for Typeable and Show. A type that we want to throw as an
exception must be an instance of Typeable, and we also require
that all exceptions provide Show, so that the system can always
print out the values of uncaught exceptions.

Our simple interface for throwing and catching is as follows:

throw :: (Exception e) => e -> a

catch :: (Exception e)
=> IO a
-> (e -> IO a)
-> IO a

Any type that is an instance of Exception can be thrown. A partic-
ular catch will catch only a certain type of exceptions, which must
be an instance of Exception. These throw and catch functions
are equivalent to the throwDyn and catchDyn described earlier.

A new type can be used as an exception in a straightforward way:

data AssertionFailed = AssertionFailed String
deriving (Typeable, Show)

instance Exception AssertionFailed

throwing and catching the new exception is simple:

> throw (AssertionFailed "foo")
‘catch‘ \(e::AssertionFailed) -> print e

AssertionFailed "foo"

The underlying implementation must in fact always throw a value
of a single, fixed, type. This is because catch cannot know the
type of the exception that was thrown, and yet it must be able to
interpret the exception value that it catches. In Haskell we don’t
have implicit runtime reflection; it is not possible to ask the type of
an arbitrary value. So we define the type of objects that are thrown
as follows:

data SomeException
= forall a . (Exception a) => SomeException a
deriving Typeable

SomeException is defined to be a value of an existentially-
quantified type a, which ranges over instances of the class Exception.
That is, SomeException is essentially just a dynamically typed
value; it is similar to the type Dynamic, but an existential is more
useful here, as we will see shortly.

Throwing and catching are defined as follows:

throw e = primThrow (SomeException e)

catch io handler
= io ‘primCatch‘ \(SomeException e) ->

case cast e of
Just e’ -> handler e’
Nothing -> throw e

Where the function cast is part of the Typeable library:

cast :: (Typeable a, Typeable b) => a -> Maybe b

The functions primThrow and primCatch are the low-level throw-
ing and catching primitives provided by the implementation. For
the purposes of experimentation, we can implement these using the
existing Control.Exception library:

primThrow = Control.Exception.throwDyn
primCatch = Control.Exception.catchDyn

We can make SomeException an instance of Exception in the
normal way; this is quite useful as it means that the existing catch
can be used to catch any exception. In order to do this, we must first
make SomeException an instance of Show:

instance Show SomeException where
show (SomeException e) = show e

instance Exception SomeException

The Show instance for SomeException prints out its contents. This
works because Show is a superclass of Exception, and so the Show
instance for the value inside SomeException is available through
the existential Exception predicate.

Unfortunately the definition of catch above cannot accommo-
date handlers that catch SomeException, it must be elaborated
slightly3:

catch io handler
= io ‘primCatch‘ \e@(SomeException e’) ->

case cast e of
Just e’’ -> handler e’’
Nothing -> case cast e’ of

Just e’’ -> handler e’’
Nothing -> throw e’

Now that SomeException is an instance of Exception, we can
catch an arbitrary exception and print it:

> throw (AssertionFailed "foo")
‘catch‘ \(e::SomeException) -> print e

AssertionFailed "foo"

We can also define a finally combinator4, which performs its first
argument followed by its second argument. The second action is
always performed, even if the first action throws an exception:

finally :: IO a -> IO b -> IO a
finally io at_last
= do a <- io ‘catch‘ \(e::SomeException) ->

do at_last; throw e
at_last
return a

3. Extending the set to a hierarchy

The design in the previous section allows exceptions to be added to
a class Exception, with a single type SomeException represent-
ing an arbitrary exception value.

This gives us a clue as to how we might extend the technique to
a hierarchy. The previous design can be viewed as a two-level hi-
erarchy, in which SomeException is the root, and each of the in-
stances of Exception are subclasses of that. To extend the scheme
to a hierarchy of arbitrary depth, each non-leaf node of the hierar-
chy must be a dynamic type like SomeException, because the dy-
namic downcast that catch embodies must compare a path through
the hierarchy (from root to node) from the catch site, with a path
(root to leaf) in the exception value.

First we add two methods to the Exception class:

3 Thanks to a reviewer of an earlier version of this paper for pointing out
this problem.
4 For simplicity, this version of finally doesn’t take account of asynchronous
exceptions [7].

class (Typeable a, Show a) => Exception a where
toException :: a -> SomeException
fromException :: SomeException -> Maybe a

toException = SomeException
fromException (SomeException e) = cast e

The toException method maps an instance of Exception to
the root of the hierarchy, SomeException. The fromException
method dynamically compares the type of an exception against a
supplied type, for use in catch.

Our throw and catch primitives are now defined like this:

throw e = primThrow (toException e)
catch io handler
= io ‘primCatch‘ \e ->

case fromException e of
Nothing -> throw e
Just e’ -> handler e’

The default methods of toException and fromException work
for direct children of SomeException, so that we can continue to
define new exceptions at the top of the hierarchy as before.

Defining a new node in the hierarchy is quite easy. Let’s define a
class of arithmetic exceptions, ArithException:

data SomeArithException
= forall a . (Exception a) => SomeArithException a
deriving Typeable

instance Show SomeArithException where
show (SomeArithException e) = show e

instance Exception SomeArithException

This type is isomorphic to SomeException. In fact we could use a
newtype, but as we will see later we may want to define nodes that
have more existential constraints besides Exception.

We don’t need to define the methods of the Exception instance,
because the default methods work fine: SomeArithException is
a direct child of SomeException.

We now define two helper functions that will be used when sub-
classing ArithException:

arithToException :: (Exception a)
=> a -> SomeException

arithToException = toException
. SomeArithException

arithFromException :: (Exception a)
=> SomeException
-> Maybe a

arithFromException x = do
SomeArithException a <- fromException x
cast a

We’ll explain how these functions work later.

In total, that’s about 10 lines of boilerplate code to create a new
node in the hierarchy (another 2 lines is required if the node isn’t a
child of the root, because the methods of Exception are required).

Now, let’s create an instance of an arithmetic exception, the divide-
by-zero exception. This will be a child of SomeArithException
in the hierarchy:

data DivideByZero = DivideByZero
deriving (Typeable, Show)

instance Exception DivideByZero where
toException = arithToException
fromException = arithFromException

It took an extra 2 lines to declare a type to be a child of a non-root
node, compared to a child of the root, SomeException.

Now, we can write code that catches any arithmetic exception. For
example:

> throw DivideByZero
‘catch‘ \(e::SomeArithException) -> print e

DivideByZero

or we can catch just DivideByZero exceptions:

> throw DivideByZero
‘catch‘ \(e::DivideByZero) -> print e

DivideByZero

The intuition for how this works goes as follows. Each type that
you can throw, like DivideByZero, is an instance of Exception,
and notionally resides at the leaf of a virtual hierarchy. The
hierarchy isn’t manifest anywhere, because it is dynamically
extensible, but it is embodied in the implementations of the
toException/fromException methods of the Exception in-
stances.

When we throw an exception value, it is wrapped in constructors,
one for each parent node successively until the root is reached.
For example, when we throw DivideByZero, the value actually
thrown is

SomeException (SomeArithException DivideByZero)

Catching an exception and comparing it against the desired type
does the reverse: fromException unwraps the value, and at each
level of the tree compares the type of the next child against the de-
sired type at that level. We can make dynamic type comparisons at
each level because of the existential Typeable constraint embed-
ded in each node. See arithFromException earlier for example:
it starts by attempting to extract a SomeArithException from the
SomeException it is passed, and then proceeds by attempting to
cast the contents of the SomeArithException to the desired type.

Creating a further subclass should help to illustrate how the mech-
anism extends:

data SomeFloatException
= forall x . (Exception x) => SomeFloatException x
deriving Typeable

instance Exception SomeFloatException where
toException = arithToException
fromException = arithFromException

instance Show SomeFloatException where

show (SomeFloatException x) = show x

floatToException :: (Exception x)
=> x -> SomeException

floatToException = toException
. SomeFloatException

floatFromException :: (Exception x)
=> SomeException
-> Maybe x

floatFromException x = do
SomeFloatException a <- fromException x
cast a

4. Attaching methods and data to subclasses

We have a hierarchy of exception types, which is open-ended ex-
tensible, and we can do dynamic type comparisons of types that
inhabit the hierarchy. Our requirements from Section 1 are satis-
fied; but is this enough? Compared to the object oriented formula-
tion, we are still somewhat impoverished: in an object-oriented lan-
guage, each node of the object oriented hierarchy can also contain
methods and instance variables that are inherited by subclasses5.

Consider I/O exceptions in Haskell 98. The existing interface for
I/O exceptions lets you query an exception value in various ways:

ioeGetErrorString :: IOException -> String
ioeGetHandle :: IOException -> Maybe Handle
ioeGetFileName :: IOException -> Maybe FilePath

additionally we can ask a value of type IOException what kind of
error it represents:

isEOFError :: IOException -> Bool
isIllegalOperation :: IOException -> Bool
isPermissionError :: IOException -> Bool

So every IOException contains information about the context in
which the error occurred (the Handle and FilePath involved in
the operation, if any), and the kind of error.

In our new framework, we could make IOException an instance
of Exception and be done with it, but that doesn’t seem right: we
couldn’t add new kinds of I/O exceptions from library code in the
future. Really, we want I/O exceptions to be an extensible subclass,
like arithmetic exceptions. Furthermore, we also want to be able to
use generic methods like ioeGetHandle on anything that is an I/O
Exception.

I/O exceptions are essentially an object-oriented class, and we
simply require a way to model this in Haskell. The solution we
adopt, namely to replace the IOException type by a type class, is
one of the alternatives proposed by Shields and Peyton Jones in the
context of reflecting the .NET object hierarchy in the Haskell type
system [12]. Our IOException class is as follows:

class IOException a where
ioeGetErrorString :: a -> String
ioeGetHandle :: a -> Maybe Handle
ioeGetFileName :: a -> Maybe FilePath

5 and can be overriden by subclasses, but we will not worry about that in
this paper.

Next, we make a node in the exception hierarchy for IO exceptions:

data SomeIOException
= forall a . (Exception a, IOException a) =>

SomeIOException a
deriving Typeable

instance Show SomeIOException where
show (SomeIOException x) = show x

instance Exception SomeIOException

ioToException :: (IOException x, Exception x)
=> x
-> SomeException

ioToException = toException . SomeIOException

ioFromException :: (IOException x, Exception x)
=> SomeException
-> Maybe x

ioFromException x = do
SomeIOException a <- fromException x
cast a

Note that the SomeIOException constructor has a new exis-
tential constraint: IOException a, which ensures that all chil-
dren of SomeIOException in the hierarchy are instances of
IOException. This means we can catch any IO exception and
apply methods of the IOException class, for example:

x ‘catch‘ \(SomeIOException e) ->
print (ioeGetErrorString e)

Note that we’re pattern matching directly on the SomeIOException
constructor, rather than just constraining the type of the exception
as in previous examples. This is necessary because we need to ex-
tract the child of the SomeIOException constructor; also note that
this requires SomeIOException to be non-abstract.

Now we can define some actual I/O exceptions. For example, the
end-of-file exception:

data EOF = EOF ...
deriving Typeable

instance Exception EOF where
toException = ioToException
fromException = ioFromException

instance IOException EOF where
...

instance Show EOF where
...

The ellipses (...) represent sections of code that are private to the
implementation of the EOF datatype: we don’t mind how it is im-
plemented, as long as it provides the methods of the IOException
class.

We haven’t given a way to construct one of these exceptions yet.
Of course in general, constructing an instance of IOException
depends on the exception itself, since it may contain data specific
to that particular exception. However, many IO exceptions contain
just the data necessary to implement the methods of IOException,
and so can be built using a common interface. Suppose we provide:

class (IOException a) => BasicIOException a where
newIOException :: Maybe Handle

-> Maybe FilePath -> String -> a

then we can provide an instance of BasicIOException for
each of the exising I/O exception types: EOF, NoSuchThing,
AlreadyExists, and so on.

4.1 Reducing code duplication

This is still rather cumbersome, however. For each new I/O ex-
ception, we need to define a new datatype that contains the same
three fields, together with instances of Exception, IOException,
SimpleIOException, and Show. We can cut down on the amount
of duplicated code as follows:

data IOExceptionInfo = IOExceptionInfo
{ ioeHandle :: Maybe Handle,
ioeFilePath :: Maybe FilePath,
ioeErrorString :: String }

deriving Typeable

instance IOException IOExceptionInfo where
ioeGetHandle = ioeHandle
ioeGetFilePath = ioeFilePath
ioeGetErrorString = ioeErrorString

instance BasicIOException IOExceptionInfo where
newIOException = IOExceptionInfo

Then, each new exception type can be defined as a newtype of
IOExceptionInfo:

newtype EOF = EOF IOExceptionInfo
deriving (Typeable,IOException,BasicIOException)

The instances of Exception and Show are still required, but we can
use GHC’s generalised newtype deriving to automatically provide
instances of IOException and BasicIOException. In fact, there
will be no code generated for these instances at all, GHC just re-
uses the dictionary for the instance of IOExceptionInfo.

5. A failed alternative

The reader might wonder why, instead of defining our hierarchy
with layers of existentially typed wrappers as we did above, we
didn’t just use parameterised datatypes – after all, a parameterised
datatype doesn’t restrict which parameters it may be instantiated
with, and so it must be extensible. So, imagine that we have the
simple Exception class defined in Section 2, and we wish to define
a subclass of arithmetic exceptions like this:

newtype ArithException e = ArithException e
deriving Typeable

instance (Show x) => Show (ArithException x) where
show (ArithException x) = show x

instance (Typeable x, Show x) =>
Exception (ArithException x)

One can think of ArithException here as a degenerate case of
an extensible record implemented using tail-polymorphism [1, 4],

and it is similar to the use of phantom types for encoding subtype
hierarchies [3, 2]. If we were to elaborate this example, using tail-
polymorphism would ensure that our hierarchy retained the desired
extensibility.

So far so good. Now we define an instance of an arithmetic excep-
tion:

data DivideByZero = DivideByZero
deriving (Typeable, Show)

and indeed we can throw and catch an instance of ArithException:

> throw (ArithException DivideByZero)
‘catch‘ \(e::ArithException DivideByZero) ->

print "caught"
"caught"

It is mildly annoying that we have to write out the exception in full
when throwing it, the system doesn’t know that DivideByZero is
an arithmetic exception. We could work around this partially by
providing a divideByZero constant to throw instead.

However, the real problem with this approach is evident when
we try to write an exception handler that catches any arithmetic
exception. Given this code:

test = throw (ArithException DivideByZero)
‘catch‘ \(e::ArithException x) ->

print "hello"

GHC complains thus:

Failed.hs:48:43:
Ambiguous type variable ‘x’ in the constraints:
‘Typeable x’ arising from use of ‘catch’

at Failed.hs:48:43-49
‘Show x’ arising from use of ‘catch’

at Failed.hs:48:43-49
Probable fix: add a type signature that fixes

these type variable(s)

the problem is that the argument to our handler function is poly-
morphic in the type variable x, and the type of catch requires that
the argument to the handler is an instance of Typeable.

Intuitively, we require catch to not match the whole type of the
exception against the handler, but recognise that this is a polymor-
phic handler, and only match the necessary parts of the type. There
isn’t a way (that I know of) to make a catch that behaves like this,
but we can define a variant catch1 that does the right thing:

catch1 :: (Typeable1 t)
=> IO a
-> (forall x. t x -> IO a)
-> IO a

catch1 io h =
io ‘primCatch‘

\(SomeException e) ->
case gapply1 h e of

Nothing -> Ex.throwDyn e
Just io -> io

The Typeable1 class is a variant of Typeable for unary type
constructors. It is provided by Data.Typeable:

class Typeable1 t where
typeOf1 :: t a -> TypeRep

The definition of catch1 mentions a function gapply1, that looks
like it should be provided by Data.Typeable, but isn’t. Here is its
type:

gapply1 :: (Typeable1 t, Typeable a)
=> (forall x. t x -> b)
-> a
-> Maybe b

gapply1 attempts to apply the polymorphic function in its first
argument to the dynamic type in its second argument, succeeding
only if the type constructor of the dynamic type matches the type
constructor expected by the polymorphic function. For reference,
here is an implementation:

gapply1 ftx a
| fst (splitTyConApp (typeOf a))

== fst (splitTyConApp (typeOf1 (getarg ftx)))
= Just (ftx (unsafeCoerce# a))
| otherwise
= Nothing
where getarg :: (t x -> b) -> t x

getarg = undefined

This is all very interesting, but academic: this solution is clearly
inferior to the one proposed in Section 3, because instead of
a single catch, we need a family of them: catch, catch1,
catch2, and so on. Moreover, the values are more cumbersome
(ArithException DivideByZero instead of just DivideByZero),
and we need more extensions (higher-rank polymorphism in the
type of gapply1).

It is possible that a more elaborate system of dynamic typing, such
as that of Clean [11], would eliminate the need for a separate
catch1 here. We have not explored this possibility.

6. Catching multiple exception classes

The programmer might want to catch multiple classes of exception
with a single handler. For example, suppose we wish to catch both
overflow and divide-by-zero exceptions arising from a particular
computation, and return the value zero:

expr ‘catch‘ \DivideByZero -> return 0
‘catch‘ \Underflow -> return 0

(we treat infix catch as left-associative). Using nested catch as in
this example works, but it is not ideal: at run-time there will be two
nested exception handlers, and if the inner handler does not match
the exception, then it will be re-thrown, caught by the outer handler,
and matched again.

It is possible to define a version of catch that takes multiple
alternatives, by wrapping each alternative in an existential:

data Catch a = forall e . (Exception e)
=> Catch (e -> IO a)

Then we can write catches, a multi-alternative variant of catch,
as follows:

catches :: IO a -> [Catch a] -> IO a
catches io alts = io ‘catch‘ catchAlts alts

catchAlts :: [Catch a] -> SomeException -> IO a
catchAlts alts e = foldr check (throw e) alts
where

check (Catch f) rest =
case fromException e of

Just h -> f h
Nothing -> rest

catches can be used as follows:

expr ‘catches‘ [
Catch $ \DivideByZero -> return 0
Catch $ \Underflow -> return 0

]

Note that the alternatives are tried in sequence, so more specific
handlers must come before less specific. This allows for the com-
mon case of catching a specific exception, with a fallback handler
for other exceptions in the class.

7. OOHaskell records as exception types

OOHaskell[4] is a type-level-programming framework that pro-
vides a full object-oriented type system in Haskell, complete with
structural record subtyping. OOHaskell requires more Haskell ex-
tensions: it uses multi-parameter type classes with functional de-
pendencies, and also overlapping/undecidable instances.

Since OOHaskell already provides subtyping, it is natural to ask
whether OOHaskell records can be used as exceptions in our frame-
work. The answer is yes; although OOHaskell as it stands does not
provide the fully dynamic downcast that we require to implement
catch for records. OOHaskell provides two ways to downcast:

• An upcast that retains the original type as a Dynamic, where
the upcast value may be downcast to the original type again,
but only the original type. This means that in order to downcast
to a supertype of the original type, one must know or guess the
original type, and that isn’t possible in the context of catch.

• A fully typed upcast, with downcasting to any supertype of the
original type. This also isn’t appropriate for catch, because it
relies on having full type information for the upcasted value,
and catch only has a dynamic type to work with.

Nevertheless, it is possible to define a fully dynamic downcast for
OOHaskell records; we built a prototype, and following personal
communication the OOHaskell authors were kind enough to ex-
plain how to construct an elegant solution, an implementation of
which is given in Figure 1 at the end of this paper. Briefly, the fol-
lowing are required:

class FieldsTypeable a

recToDyn :: (FieldsTypeable a)
=> Record a
-> DynRecord

narrowDyn :: (FieldsTypeable a)
=> DynRecord
-> Maybe (Record a)

where FieldsTypeable is a new class, with instances provided
for all record types with Typeable fields. The function recToDyn
upcasts a record to a dynamic record, and narrowDyn downcasts a
dynamic record to an arbitrary supertype of the original record type
(one could also think of narrowDyn as an upcast, if DynRecord is
just a dynamic representation of the original record).

Given these definitions, we can incorporate OOHaskell records
into our exception framework quite straightforwardly. We start by
defining a node in the exception hierarchy for records:

data SomeRecord =
forall r. (ShowComponents r, FieldsTypeable r)

=> SomeRecord r
deriving Typeable

instance Show SomeRecord where
show (SomeRecord r) = show (Record r)

instance Exception SomeRecord

The ShowComponents constraint is part of the OOHaskell frame-
work, it is required for converting records to Strings.

Now, the magic part is that we can make every record an instance
of Exception:

instance (FieldsTypeable a,
Typeable a,
ShowComponents a)

=> Exception (Record a)
where
toException (Record a) =
toException (SomeRecord a)

fromException (SomeException a) = do
SomeRecord r <- cast a
narrowDyn (recToDyn (Record r))

The toException method is boilerplate: every record is wrapped
in SomeRecord when thrown. In fromException, we convert the
record in the exception to a DynRecord using recToDyn, and
then attempt to use narrowDyn to cast it to the required type.
narrowDyn will return Nothing if the desired type is not a su-
pertype of the record in the exception, in which case the result of
fromException will be Nothing.

The following examples illustrate that we can throw and catch
arbitrary records, with subtyping and full type inference. First,
we define some example record types. L1, L2, and L3 are labels,
defined with some boilerplate required by OOHaskell:

data L1 deriving Typeable
l1 :: Proxy L1
l1 = proxy

data L2 deriving Typeable
l2 :: Proxy L2
l2 = proxy

data L3 deriving Typeable
l3 :: Proxy L3
l3 = proxy

rec is an example record with three fields:

rec = (l1 .=. True
.*. l2 .=. "fish"
.*. l3 .=. 642
.*. emptyRecord
)

Now, we can throw rec and catch it as an arbitrary exception:

*Main> throw rec ‘catch‘
\(e::SomeException) -> print e

Record{l1=True,l2="fish",l3=642}

The following are some types that we expect to be supertypes of
the type of rec, by selecting a subset of the fields:

type JustL1 = Record (L1 :=: Bool :*: HNil)

type JustL2L1 = Record (L2 :=: String
:*: L1 :=: Bool
:*: HNil)

To demonstrate that we can throw rec and catch a supertype:

*Main> throw rec ‘catch‘ \(e::JustL1) -> print e
Record{l1=True}
*Main> throw rec ‘catch‘ \(e::JustL2L1) -> print e
Record{l2="fish",l1=True}

An interesting aspect of this formulation is that it combines two
forms of subtyping; the limited nominal subtyping provided by our
framework of existential types, together with the general record
subtyping provided by OOHaskell. Yet, the programmer’s interface
is simple and intuitive.

8. Related Work

Haskell has an unusually expressive type system, and in many ways
the community is only beginning to understand its power; many
programming idioms that were previously thought to require new
extensions to Haskell have recently been discovered to be already
possible in Haskell 98, or with common existing extensions.

So as one might expect, there is more than one way to achieve
the goals set out in Section 1 in Haskell. The contribution of this
paper is to describe a solution that is relatively lightweight in
that it doesn’t rely on external scaffolding, and can be completely
described in this short paper. This means that the technique will be
accessible and understandable to many, which is a useful property
for something as central to the language as exceptions.

In this section we outline some of the other methods that could
lead to solutions to the problem, and where possible compare them
to ours.

Open types. Open data types and open functions [6] are proposed
extensions to Haskell to solve the “expression problem”, in which
most programming languages provide either a way to extend the

range of operations on a type, or the range of constructors of the
type, but not both. The authors even cite the extensible exception
type problem as one target for their work, and describe how it
is addressed by their solution. Compared to our approach, theirs
requires new extensions to the language (although not deep), and
has difficulties with separate compilation.

Arguably the open data types approach is more direct and more
accessible, as is often the case with extensions designed to solve a
particular problem. Still, the argument for adding open data types to
the language is weakened by the fact that they are subsumed by type
classes: in fact the authors give an encoding of open data types into
type classes, but they argue that using type classes directly is less
convenient than open data types, due to the lack of pattern matching
and the inconvenience of the extra syntactic clutter. The approach
described in this paper would benefit from direct pattern matching
when writing a handler for multiple types of exception, but in the
(common) case of catching a single class of exceptions we don’t
miss it.

Phantom types. Phantom types are useful for expressing subtyping
hierarchies [3, 2], so it seems reasonable to wonder whether they
might offer a solution to the extensible exception types problem.
However, it turns out that phantom types are not applicable in
this context, because using parameterised types leaves us with the
problems described in Section 5, where we cannot easily write
catch expressions that catch a class of exceptions.

HList and OOHaskell. We explored connecting OOHaskell[4]
with our exception framework in Section 7. Does OOHaskell
subsume our work here? Strictly speaking no: OOHaskell as it
stands doesn’t provide the required dynamic downcast operation,
although we demonstrated how to add it earlier. Given this, in a
sense OOHaskell does subsume the exception framework presented
herein: if we were prepared to use OOHaskell records for excep-
tions exclusively, then we could easily define throw and catch us-
ing the OOHaskell library, and the user benefits from OOHaskell’s
subtyping instead of our ad-hoc framework. Furthermore, subtyp-
ing in OOHaskell is implicit, there is no need to declare subtypes
as we do in this paper.

The main difference between OOHaskell and this work is that we
are aiming for a lightweight solution. Bringing in a full type-level-
programming framework seems overkill to solve the extensible ex-
ceptions problem. Furthermore, our solution works with arbitrary
algebraic datatypes: any type can be spliced into the exception hi-
erarchy by the addition of an instance of the Exception class. Ad-
ditionally we have shown that should the programmer wish to use
OOHaskell for exceptions, doing so in the context of our frame-
work is eminently possible and the resulting interface is seamless.

O’Haskell. O’Haskell[8] extends Haskell with object-oriented sub-
typing. As such, it would be entirely possible to implement extensi-
ble exceptions using inheritance in O’Haskell. However, O’Haskell
is a significant increment over Haskell, and our goal here was
to achieve the simple task of an extensible exception type within
Haskell using as few extensions as possible.

Exceptions in ML. In the ML family, including O’Caml, an exten-
sible exception type is provided as a built-in language feature. The
exception type is flat; there is no support for classes of exceptions.

9. Discussion and Conclusion

The question of whether Haskell should include support for exten-
sible types comes up from time to time, and for a long time we
assumed that in order to provide an extensible exception library we

would need to extend Haskell with some kind of extensible types.
As we have shown in this paper, new extensions are not necessary
to achieve a lightweight and attractive solution to the problem.

The questions before the community is: is this design suitable for
adoption by the standard? We argue that, provided the extensions
that we rely on (existentials and Typeable) are in the standard,
then this framework is a suitable basis for exceptions.

References

[1] F. W. Burton. Type extension through polymorphism. ACM Trans.
Program. Lang. Syst., 12(1):135–138, 1990.

[2] S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones. Calling Hell
from Heaven and Heaven from Hell. In ACM SIGPLAN International
Conference on Functional Programming (ICFP’99), pages 114–125,
Paris, Sept. 1999. ACM.

[3] M. Fluet and R. Pucella. Phantom types and subtyping. In TCS
’02: Proceedings of the IFIP 17th World Computer Congress -
TC1 Stream / 2nd IFIP International Conference on Theoretical
Computer Science, pages 448–460, Deventer, The Netherlands, The
Netherlands, 2002. Kluwer, B.V.

[4] O. Kiselyov and R. Lämmel. Haskell’s overlooked object system,
2005. http://homepages.cwi.nl/∼ralf/OOHaskell/.

[5] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical
approach to generic programming. In ACM SIGPLAN International
Workshop on Types in Language Design and Implementation
(TLDI’03), pages 26–37, New Orleans, Jan. 2003. ACM.

[6] A. Löh and R. Hinze. Open data types and open functions. In Eighth
ACM-SIGPLAN International Symposium on Principles and Practice
of Declarative Programming (PPDP’06), Venice, Italy, July 2006.
ACM.

[7] S. Marlow, S. Peyton Jones, A. Moran, and J. Reppy. Asynchronous
exceptions in Haskell. In ACM Conference on Programming
Languages Design and Implementation (PLDI’01), pages 274–285,
Snowbird, Utah, June 2001. ACM.

[8] J. Nordlander. O’Haskell. http://www.cs.chalmers.se/
∼nordland/ohaskell/.

[9] J. Nordlander. O’Haskell rationale. http://www.cs.chalmers.
se/∼nordland/ohaskell/rationale.html.

[10] S. Peyton Jones, A. Reid, C. Hoare, S. Marlow, and F. Henderson.
A semantics for imprecise exceptions. In ACM Conference on
Programming Languages Design and Implementation (PLDI’99),
pages 25–36, Atlanta, May 1999. ACM.

[11] M. Pil. Dynamic types and type dependent functions. In Implemen-
tation of Functional Languages, pages 169–185, 1998.

[12] M. Shields and S. L. P. Jones. Object-oriented style overloading for
haskell. Electronic Notes in Theoretical Computer Science, 59(1),
2001.

class FieldsTypeable a where
getFieldDynamics :: a -> [Dynamic]
reconstruct :: a{-dummy-} -> [Dynamic] -> Maybe a

instance FieldsTypeable HNil where
getFieldDynamics HNil = []
reconstruct _ _ = Just HNil

instance (Typeable f, FieldsTypeable r) => FieldsTypeable (HCons f r) where
getFieldDynamics (HCons f r) = toDyn f : getFieldDynamics r

reconstruct undef all_fields = go all_fields
where HCons _ r = undef

go [] = Nothing
go (f : fields)
| Just f’ <- fromDynamic f = do

rest <- reconstruct r all_fields
Just (HCons f’ rest)

| otherwise =
go fields

newtype DynRecord = DynRecord [Dynamic]

recToDyn :: (FieldsTypeable a) => Record a -> DynRecord
recToDyn (Record r) = DynRecord (getFieldDynamics r)

narrowDyn :: (FieldsTypeable a) => DynRecord -> Maybe (Record a)
narrowDyn (DynRecord fields) = result
where
result = Record ‘liftM‘ reconstruct dummy fields
dummy = undefined ‘asTypeOf‘ case fromJust result of Record a -> a

Figure 1. Implementation of dynamic downcast in OOHaskell

