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Abstract
Higher-order languages that encourage currying are implemented
using one of two basic evaluation models: push/enter or eval/apply.
Implementors use their intuition and qualitative judgements to
choose one model or the other.

Our goal in this paper is to provide, for the first time, a more sub-
stantial basis for this choice, based on our qualitative and quanti-
tative experience of implementing both models in a state-of-the-art
compiler for Haskell.

Our conclusion is simple, and contradicts our initial intuition: com-
piled implementations should use eval/apply.

Categories and Subject Descriptors: D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages

General Terms: Languages, Performance

1 Introduction
There are two basic ways to implement function application in
a higher-order language, when the function is unknown: the
push/entermodel or the eval/applymodel [11]. To illustrate the
difference, consider the higher-order function zipWith, which zips
together two lists, using a function k to combine corresponding list
elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith k [] [] = []
zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys

Here k is an unknown function, passed as an argument; global flow
analysis aside, the compiler does not know what function k is bound
to. What code should the compiler generate to execute the call
k x y in the body of zipWith? It can’t blithely pass two argu-
ments to k, because k might in reality take just one argument and
compute for a while before returning a function that consumes the
next argument; or k might take three arguments, so that the result of
the zipWith is a list of functions.

In the push/enter model, the call proceeds by pushingthe arguments
x and y on the stack, and enteringthe code for k. Every function’s
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entry code is required to check how many arguments are on the stack,
and behave appropriately: if there are too few arguments, the func-
tion must construct a partial application and return. If there are too
many arguments, then only the required arguments are consumed,
the rest of the arguments are left on the stack to be consumed later,
presumably by the function that will be the result of this call.

In the eval/apply approach, the caller first evaluatesthe function k,
and then appliesit to the correct number of arguments. The latter
step involves some run-time case analysis, based on information ex-
tracted from the closure for k. If k takes two arguments, we can call
it straightforwardly. If it takes only one, we must call it passing x,
and then call the function it returns passing y; if it takes more than
two, we must build a closure for the partial application k x y and
return that closure.

The crucial difference between push/enter and eval/apply is this.
When a function of statically-unknown arity is applied, two pieces
of information come together at run-time: the arity of the function
and the number of arguments in the call. The two models differ in
whether they place responsibility for arity-matching with the func-
tion itself, or with the caller:

Push/enter: the function, which statically knows its own arity, ex-
amines the stack to figure out how many arguments it has
been passed, and where they are. The nearest analogy is C’s
“varargs” calling convention.

Eval/apply: the caller, which statically knows what the arguments
are, examines the function closure, finds its arity, and makes an
exact call to the function.

Which of the two is best in practice? The trouble is that the evalua-
tion model has a pervasive effect on the implementation, so it is too
much work to implement both and pick the best. Historically, com-
pilers for strict languages (using call-by-value) have tended to use
eval/apply, while those for lazy languages (using call-by-need) have
often used push/enter, but either approach will work in both settings.
In practice, implementors choose one of the two approaches based
on a qualitative assessment of the trade-offs. In this paper we put the
choice on a firmer basis:

� We explain precisely what the two models are, in a common
notational framework (Section 4). Surprisingly, this has not
been done before.

� The choice of evaluation model affects many other design
choices in subtle but pervasive ways. We identify and discuss
these effects in Sections 5 and 6, and contrast them in Sec-
tion 7. There are lots of nitty-gritty details here, for which we
make no apology — they were far from obvious to us, and ar-
ticulating these details is one of our main contributions.

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, principally be-
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cause push/enter requires a stack like no other: stack-walking
is more difficult, and compiling to an intermediate language
like C or C-- is awkward or impossible.

� We give the first detailed quantitative measurements (Sec-
tion 8) that contrast the two approaches, based on a credible,
optimising compiler (the Glasgow Haskell Compiler, GHC).
We give both bottom-line results such as wall-clock time, total
instruction count and allocation, and also some more insightful
numbers such as breakdowns of call patterns.

Our experiments show that the execution costs of push/enter
and eval/apply are very similar, despite their pervasive differ-
ences. What you gain on the swings you lose on the round-
abouts.

Our conclusion is simple, and contradicts the abstract-machine her-
itage of the lazy functional-language community: eval/apply is a
clear win. We have now adopted eval/apply for GHC.

2 Background: efficient currying
The choice between push/enter and eval/apply is only important if
the language encourages currying. In a higher-order language one
can write a multi-argument function in two ways:

f :: (Int,Int) -> Int
f (x,y) = x*y

g :: Int -> Int -> Int
g x y = x*y

Here, f is un-curried. It takes a single argument that is a pair, un-
packs the pair, and multiplies its components. On the other hand, g
is curried. Notionally at least, g takes one argument, and returns a
function that takes a second argument, and multiplies the two. The
type of g should be read right-associatively, thus:

g :: Int -> (Int -> Int)

Currying appeals to our sense of beauty, because multi-argument
functions come “for free”; one does not need data structures to sup-
port them.

We said that “notionally at least g takes one argument”, but suppose
that, given the above definition of g, the compiler is faced with the
call g 3 4. The call is to a known function— one whose defini-
tion the compiler can “see”. It would be ridiculous to follow the
currying story literally. To do that, we would call g passing one
argument, 3, get a function closure in return, and then call that func-
tion, again passing one argument, 4. No, in this situation, any decent
compiler must load the arguments 3 and 4 into registers, or on the
stack, and call the code for g directly, and that is true whether the
basic evaluation model is push/enter or eval/apply. In the rest of
this paper we will take it for granted that saturated calls to “known”
functions are compiled using an efficient argument-passing conven-
tion. The push/enter and eval/apply models differ only in how they
handle calls to “unknown” functions.

In any higher-order language one can write curried functions, simply
by writing a function that returns a function, but languages differ in
the degree to which their syntax encouragesit. For the purposes of
this paper, we assume that currying is to be regarded as the native
way to define multi-argument functions, and that we wish to make
multi-argument curried functions as fast as possible. Our measure-
ments show that around 40% of unknown function calls have more
than one argument (Section 8).

3 Language
To make our discussion concrete we use a small, non-strict inter-
mediate language similar to that used inside the Glasgow Haskell
Compiler. Its syntax is given in Figure 1. In essence it is the STG

language [11], but we have adjusted some of the details for this pa-
per.

Although the push/enter vs eval/apply question applies equally to
strict and non-strict languages, we treat a non-strict one here because
it is the slightly more complicated case, and because our quantitative
data is for Haskell.

The idea is that each syntactic construct in Figure 1 has a direct
operational reading. We give these operational intuitions here, and
we will make them precise in Section 4:

� A literal is an unboxed32-bit integer, i, or 64-bit double-
precision floating-point number, d. We have more to say about
unboxed values in Section 3.3.

� A call, f k a1 : : :an, applies the function f to the arguments
a1 : : :an. The application is in A-normal form [5] — that is,
each argument is an atom (literal or variable) — so there is no
argument preparation to perform first. The superscript k de-
scribes the statically-known information about the function’s
arity. It takes two forms:

– f n, where n is an integer, indicates that the compiler stat-
ically knows the arity of f , usually because there is a
lexically-enclosing binding for f that binds it to a FUN
object with arity n.

– f � indicates that the compiler has no static information
about f ’s arity. It would be safe to annotate every appli-
cation with �.

There is no guarantee that the function’s arity (whether stati-
cally known or not) matches the number of arguments supplied
at the call site.

� A let expression (and only a let) allocates an object in the
heap. We discuss the forms of heap object in Section 3.1. In
this paper we will only discuss simple, non-recursive let ex-
pressions. GHC supports a mutually-recursive letrec as well,
of course, but recursive bindings do not affect the issues dis-
cussed this paper, so we omit them to save clutter. The top-
level definitions of a program are recursive, however.

� A case evaluates a sub-expression, called the scrutinee, and
optionally performs case analysis on its value. More con-
cretely, case saves any live variables that are needed in the
case alternatives, pushes a return address, and then evaluates
the scrutinee. At the return address, it performs case analysis
on the returned value. All case expressions are exhaustive: ei-
ther there is a default alternative as a catch-all, or the patterns
cover all the possibilities in the data type. We often omit the
curly braces in our informal examples, using layout instead.

3.1 Heap objects
The language does not provide a syntactic form of expression for
constructor applications, or for anonymous lambdas; instead, they
must be explicitly allocated using let. In general, let performs
heap allocation, and the right hand side of a let is a heap object.
There are exactly five kinds of heap objects:

FUN(x1 : : :xn ! e) is a function closure, with arguments xi and
body e (which may have free variables other than the xi ). The
function is curried — that is, it may be applied to fewer than n,
or more than n, arguments — but it still has an arity of n.

PAP( f a1 : : :an) represents a partial application of function f to ar-
guments a1 : : :an. Here, f is guaranteed to be FUN object, and
the arity of that FUN is guaranteed to be strictly greater than
n.

CON(C a1 : : :an) is a data value, the saturated application of con-
structor C to arguments a1 : : :an.
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Variables x;y; f ;g
Constructors C Defined in data type declarations

Literals lit ::= i j d Unboxed integer or double
Atoms a;v ::= lit j x Function arguments are atomic

Function arity k ::= � Unknown arity
j n Known arity n� 1

Expressions e ::= a Atom
j f k a1 : : :an Function call (n� 1)
j � a1 : : :an Saturated primitive operation (n� 1)
j let x = ob j in e
j case eof falt1; : : : ;altng (n� 1)

Alternatives alt ::= C x1 : : :xn ! e (n� 0)
j x! e Default alternative

Heap objects ob j ::= FUN(x1 : : :xn ! e) Function (arity = n� 1)
j PAP( f a1 : : :an) Partial application ( f is always a FUN

with arity( f )> n� 1)
j CON(C a1 : : :an) Saturated constructor (n� 0)
j THUNK e Thunk
j BLACKHOLE [only during evaluation]

Programs prog ::= f1 =ob j1; : : : ; fn=ob jn

Figure 1. Syntax

THUNK e represents a thunk, or suspension. When its value is
needed, e is evaluated, and the thunk overwritten with (an in-
direction to) the value of e.

BLACKHOLE is used only during evaluation of a thunk, never in
a source program. While a thunk is being evaluated, it is re-
placed by BLACKHOLEto avoid space leaks and to catch cer-
tain forms of divergence [7].

Of these, FUN, PAP and CON objects are values, and cannot be
evaluated any further.

A top-level definition creates a statically-allocated object, at a fixed
address, whereas a let allocates a heap object dynamically.

3.2 Case expressions
The language offers conventional algebraic data type declarations,
such as

data Tree a = Leaf a | Branch (Tree a) (Tree a)
data Bool = False | True
data List a = Nil | Cons a (List a)

Values of type Tree are built with the constructors Leaf and
Branch, and can be discriminated and taken apart with a case ex-
pression. The boolean type Bool is just a regular algebraic data type,
so that a conditional is implemented by a case expression. Con-
structors are always saturated; unsaturated constructors can always
be saturated by eta expansion.

To give the idea, here is the Haskell definition of the map function:

map f [] = []
map f (x:xs) = f x : map f xs

and here is its rendition into our intermediate language:

nil = CON Nil

map = FUN (f xs ->
case xs of

Nil -> nil
Cons y ys -> let h = THUNK (f y)

t = THUNK (map f ys)
r = CON (Cons h t)

in r
)

The top-level definition of nil is automatically generated by GHC,
so that there is a value to hand for map to return in the Nil case al-
ternative. A similar top-level definition is generated for each nullary
constructor.

The scrutinee of a case expression is an expressionrather than
an atom. This is important, because it lets us write, for example,
case (null xs) of ..., rather than

let y = THUNK (null xs) in case y of ...

There is no need to construct a thunk!

3.3 Unboxed values
Another slightly unusual feature of our language is the use of un-
boxed values[12]. Supporting unboxed values is vital for perfor-
mance, but it has significant consequences for the implementation:
both heap objects and the stack may contain a mix of pointer and
non-pointer values.

Most values are represented by a pointer to a heap object, including
all data structures, function closures, and thunks. Our intermediate
language also supports a handful of primitive, unboxed data types, of
which we consider only Int# and Double# here. An Int# is a 32-bit
integer, in the native machine representation; it is not a pointer. Sim-
ilarly, a Double# is a 64-bit double-precision floating-point value in
IEEE representation. These unboxed values can be passed as a argu-
ments to a function, returned as results, stored in data structures, and
so on. For example, here is how the (boxed) type Int is defined, as
an ordinary algebraic data type:

data Int = I# Int#

That is, an Int value is a heap-allocated data structure, built with the
I# constructor, containing an Int#.
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Having explicit unboxed values allows us to make boxing and un-
boxing operations explicit in our intermediate language. For exam-
ple, here is how Int addition is defined:

plusInt :: Int -> Int -> Int
plusInt a b

= case a of { I# x ->
case b of { I# y ->
I# (x +# y)
}}

The first case expression evaluates the argument a (in case it is a
thunk) and takes it apart; the second case does the same to b; the
case x +# y of ... adds the two unboxed values using the prim-
itive addition operator +#, while the final use of I# boxes the result
back into an Int.

4 The two evaluation models
It is now time to become precise about what we mean by a
“push/enter” or “eval/apply” model. We do so by giving an op-
erational semantics that exposes the key differences between these
models, while still hiding some representation details that only con-
fuse the picture. Douence and Fradet give a completely different,
combinator-based, formalism that allows them to contrast push/enter
with eval/apply [2], although their treatment only considers single-
argument functions whereas we are interested in how to perform
multiple application without building intermediate function closures.
Furthermore, the semantics we present here maps more directly to
operational intuitions.

Figure 2 gives the operational semantics for both evaluation models,
using a small-step transition relation of the form

e1; s1; H1 ) e2; s2; H2

The components of the program state are:

The code e, is the expression under evaluation, in the syntax of Fig-
ure 1.

The stack s, is a stack of continuations that says what to do when
the current expression is evaluated. We use the notation “:” to
means cons in the context of a stack.

The heap H, is a finite mapping from variables (which we treat as
synonymous with heap addresses) to heap objects. The latter
have the syntax given in Figure 1. To reduce clutter, we use the
convention that no binding is ever removed from the heap. For
example, in rule CASECON the heap H on the right-hand side
of the rule still has a binding for v.

The stack continuations, κ, take the following forms:

κ ::= case�of falt1; : : : ;altng
j Upd t � Update thunk t with returned value
j (� a1 : : :an) Apply the returned function to a1 : : :an

[eval/apply only]
j Arg a Pending argument [push/enter only]

The meaning of these continuations should become clear as we dis-
cuss the evaluation rules. The rules themselves are fairly dense, so
the following subsections explain them in some detail. After that, we
sketch how the operational semantics is mapped onto a real machine
by the Glasgow Haskell Compiler.

4.1 Rules common to both models
The first block of evaluation rules in Figure 2 are common to both
push/enter and eval/apply.

The first rule, LET, says what happens when the expression to be
evaluated is a let form. Following Launchbury [8], we simply allo-
cate the right-hand side ob j in the heap, using a fresh name x0, extend

the heap thus H[x0 7! ob j]. The use of a fresh name corresponds to
allocating an unused address in the heap. Lastly, we substitute x0 for
x in e, the body of the let, before continuing. In a real implementa-
tion this substitution would be managed by keeping a pointer to the
new object in a register, or accessing it by offset from the allocation
pointer, but we do not need to model those details here.

The next group of four rules deal with case expressions. Rule CASE,
starts the evaluation of a case expression by pushing a case contin-
uation on the stack, and evaluating the scrutinee, e. When evaluation
is complete, a value v (either a literal or a pointer to a heap value) is
returned to the case continuation by RET.

If v is (a pointer to) a constructor, rule CASECON applies; it resumes
the appropriate branch of the case, binding the constructor argu-
ments to xi . If the returned value does not match any other case
alternative, the default alternative is used (rule CASEANY). These
two rules precede CASE because they overlap it, and we use the con-
vention that the first applicable rule takes precedence.

The next two rules deal with thunks. If the expression to be evalu-
ated is a thunk, we push an update continuation (or update frame),
Upd t �, which points to the thunk to be updated (rule THUNK).
While the thunk t is being evaluated we update the heap so that t
points to a BLACKHOLE. No left-hand sides match BLACKHOLE
so evaluation will “get stuck” if we try to evaluate a thunk during
its own evaluation. This simple trick has been known for a long
time, and is also crucially important to avoid space leaks [7]. When
evaluation is complete, we overwrite the thunk with the value (rule
UPDATE).

The last two rules deal with saturatedapplications of knownfunc-
tions, either primitive operations (PRIMOP) or user-defined ones
(KNOWNCALL). Both are very simple and can be compiled effi-
ciently, with fast parameter-passing mechanisms. Notice that the
call to f is a tail call. No continuation is pushed; instead control is
simply transferred to f ’s body.

The big remaining question is how function application is handled
when the function is unknown, or is applied to too many or too few
arguments. And that is the key point at which the two evaluation
models differ, of course.

4.2 The push/enter model
The rules in the second block of Figure 2 are the ones specific to
the push/enter model. First consider rule PUSH, which deals with
function applications. It simply pushes the arguments onto the stack,
as pending arguments, using the Arg continuation, and enters the
function. The next three rules deal with what “entering the function”
means:

� First, the function f might turn out to be a FUN object of arity
n, and there might be n or more arguments on the stack. In
that case (rule FENTER), we can proceed to evaluate the body
of the function, binding the actual arguments to the formal pa-
rameters as usual. Any excess pending arguments are left on
the stack, to be consumed by the function that e (presumably)
evaluates to.

� What if there aren’t enough pending arguments on the stack?
This could happen either because a function-valued thunk
pushed an update frame, or because a case expression eval-
uated a function (see Section 3.2). In either case, we must con-
struct a value to return to the “caller” and that value is a partial
application, or PAP, as rule PAP1 shows.

� What if f is a PAPand not a FUN? In that case, we simply
unpack the PAP’s arguments onto the stack, and enter the func-
tion (rule PENTER).
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Rules common to push/enter and eval/apply

let x = ob j in e; s; H ) e[x0=x]; s; H[x0 7! ob j] (LET)
x0 fresh

case v of f: : : ;C x1 : : :xn ! e; : : :g; s;
H[v 7!CON(C a1 : : :an)]

) e[a1=x1 : : :an=xn]; s; H (CASECON)

case v of f: : : ;x! eg; s; H ) e[v=x]; s; H (CASEANY)
if v is a literal or H[v] is a value, and does not
match any other case alternative

case eof f: : :g; s; H ) e; case�off: : :g : s; H (CASE)

v; case�off: : :g : s; H ) case v of f: : :g; s; H (RET)
if v is a literal or H[v] is a value

x; s; H[x 7! THUNK e] ) e; Upd x� : s; H[x 7! BLACKHOLE] (THUNK)

y; Upd x� : s; H ) y; s; H[x 7!H[y]] (UPDATE)
if H[y] is a value

f n a1 : : :an; s; H[ f 7! FUN(x1 : : :xn ! e)] ) e[a1=x1 : : :an=xn]; s; H (KNOWNCALL)

� a1 : : :an; s; H ) a; s; H (PRIMOP)
where a is the result of applying the primitive op-
eration � to arguments a1 : : :an

Rules for push/enter

f k a1 : : :am; s; H ) f ; Arg a1 : : : : : Arg am : s; H (PUSH)

f ; Arg a1 : : : : : Arg an : s; H[ f 7! FUN(x1 : : :xn ! e)] ) e[a1=x1 : : :an=xn]; s; H (FENTER)

f ; Arg a1 : : : : : Arg am : s; H[ f 7! FUN(x1 : : :xn ! e)] ) p; s; H[p 7! PAP( f a1 : : :am)] (PAP1)
if m� 1; the top element of s is not of the form
Arg y; p fresh

f ; Arg an+1 : s; H[ f 7! PAP(g a1 : : :an)] ) g; Arg a1 : : : : : Arg an : Arg an+1 : s; H (PENTER)

Rules for eval/apply

f � a1 : : :an; s; H[ f 7! FUN(x1 : : :xn ! e)] ) e[a1=x1 : : :an=xn]; s; H (EXACT)

f k a1 : : :am; s; H[ f 7! FUN(x1 : : :xn ! e)] ) e[a1=x1 : : :an=xn]; (� an+1 : : :am) : s; H (CALLK)
if m> n
) p; s; H[p 7! PAP( f a1 : : :am)] (PAP2)
if m< n, p fresh

f � a1 : : :am; s; H[ f 7! THUNK e] ) f ; (� a1 : : :am) : s; H (TCALL)

f k an+1 : : :am; s; H[ f 7! PAP(g a1 : : :an)] ) g� a1 : : :an an+1 : : :am; s; H (PCALL)

f ; (� a1 : : :an) : s; H ) f � a1 : : :an; s; H (RETFUN)
H[ f ] is a FUN or PAP

Figure 2. The evaluation rules
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Figure 3. A heap object

The three cases above do not exhaust the possible forms of f . It
might also be a THUNK, but we have already dealt with that case
(rule THUNK). It might be a CON, in which case there cannot be any
pending arguments on the stack, and rules UPDATE or RET apply.

4.3 The eval/apply model
The last block of Figure 2 shows how the eval/apply model deals
with function application. The first three rules all deal with the case
of a FUN applied to some arguments:

� If there are exactly the right number of arguments, we behave
exactly like rule KNOWNCALL, by tail-calling the function.
Rule EXACT is still necessary — and indeed has a direct coun-
terpart in the implementation — because the function might
not be statically known.

� If there are too many arguments, rule CALLK pushes a call con-
tinuation on the stack, which captures the excess arguments.
This is the essence of eval/apply. Given an application f x y
where f takes one argument, first call f x, and then apply the
resulting function to y.

� If there are too few arguments, we build a PAP (rule PAP2),
which becomes the value of the expression.

These rules work by dynamically inspecting the arity of the function
closure in the heap, which works fine for both known and unknown
calls, but we can do better for known calls. Rule KNOWNCALL has
already dealt with the saturated known case, and it is probably not
worth the bother of treating under- and over-saturated known calls
specially because they are very uncommon (see Section 8).

Another possibility is that the function in an application is a
THUNK (rule TCALL). This case is very like the over-applied func-
tion of rule CALLK; we push a call continuation and enter the thunk.
(This in turn will push an update frame via rule THUNK.)

Finally, the function in an application might be a partial application
of another function g (rule PCALL). In that case we unpack the PAP
and apply g to its new arguments. Since g is sure to be a FUN, this
will take us back to one of the cases in rules EXACT, CALLK or PAP2.

That concludes the rules for function application. We need one last
rule, RETFUN, which returns a function value (PAP or FUN) to a
call continuation, in the obvious way. This rule re-activates a call
continuation, exactly as rule RET re-activates a case continuation.

4.4 Heap objects
To provide the context for our subsequent discussion, we now sketch
briefly how GHC maps the operational semantics onto a real ma-
chine. Figure 3 shows the layout of a heap object. In GHC, the first
word of every object is called the object’s info pointer, and points to
an immutable, statically-allocated info table. The remainder of the
object is called the payload, and may consist of a mixture of pointers

and non-pointers. For example, the object CON(C a1 : : :an) would
be represented by an object whose info pointer represented the con-
structor C and whose payload is the arguments a1 : : :an.

The info table contains:

� Executable code for the object. For example, a FUN object
has code for the function body.

� An object-type field, which distinguishes the various kinds of
objects (FUN, PAP, CONetc) from each other.

� Layout information for garbage collection purposes, which de-
scribes the size and layout of the payload. By “layout” we
mean which fields contain pointers and which contain non-
pointers, information that is essential for accurate garbage col-
lection.

� Type-specific information, which varies depending on the ob-
ject type. For example, a FUN object contains its arity; a CON
object contains its constructor tag, a small integer that distin-
guishes the different constructors of a data type; and so on.

In the case of a PAP, the size of the object is not fixed by its info table;
instead, its size is stored in the object itself. The layout of its fields
(e.g. which are pointers) is described by the (initial segment of) an
argument-descriptor field in the info table of the FUN object which
is always the first field of a PAP. The other kinds of heap object all
have a size that is statically fixed by their info table.

A very common operation is to jump to the entry code for the object,
so GHC uses a slightly-optimised version of the representation in
Figure 3. GHC places the info table at the addresses immediately
beforethe entry code, and reverses the order of its fields, so that the
info pointer is the entry-code pointer, and all the other fields of the
info table can be accessed by negative offsets from this pointer. This
is a somewhat delicate hack, because it involves juxtaposing code
and data, but (sadly) it does improve performance significantly (on
the order of 5%). Again, however, is not germane to this paper and
we ignore it from now on.

4.5 The evaluation stack
In GHC, the evaluation stack s, in Section 4, is represented by a con-
tiguous block of memory1. The abstract stack of Section 4 is a stack
of continuations, κ. These continuations are each represented con-
cretely by a stack frame. The stack frames for the two continuations
common to both push/enter and eval/apply are these:

� An update continuation Upd x� is represented by a small stack
frame, consisting of a return address and a pointer to the thunk
to be updated, x. In the push/enter model, an update frame must
contain a second word, which points to the next update frame
down in the stack (see Section 5). Having a return address in
the update frame means that a value can simply return to the
topmost return address, without having to test whether the top
frame is an update continuation or a case continuation.

The return address for every update frame can be identical,
though; it points to a hand-written code fragment, part of the
runtime system, that performs the update, pops the update
frame, and returns to the next frame.

� A case continuation case�offaltsg is represented by a return
address, together with the free variables of the alternatives alts,
which must be saved on the stack across the evaluation of the
scrutinee. For example, consider this function:

1In fact, GHC supports lightweight concurrency, so there are
many threads. Each has its own stack, of limited size. The compiler
generates explicit stack-overflow tests, and grows the stack when
necessary. None of this is relevant to the discussion of this paper, so
we do not discuss concurrency or stack overflow any further.
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f :: (Int,Int) -> (Bool,Int) -> Int
f x y = case h1 x of

(_,b) -> case h2 y of
w -> w+b

Across the call to h1 x, we must save y on the stack, because
it is used later, but we need not save x; then across the call to
h2 y we must save b, but we need not save y.

Unlike an update frame, the return address for each case ex-
pression is different: it points to code for the case alternatives
of that particular case expression.

In both cases, the frame can be thought of as a stack-allocated func-
tion closure: the return address is the info pointer, and it “knows”
the layout of the rest of the frame — that is, where the pointers, non-
pointers and (in the case of case continuations) dead slots are. In our
implementation, the stack grows downward, so the return address is
at the lowest address, and a stack frame looks exactly like Figure 3.
A return address has an info table that the garbage collector uses to
navigate over the frame.

In the next sections we describe how the other two continuations are
implemented: the Arg continuation for push/enter (Section 5) and
the (� a1 : : :an) continuation for eval/apply (Section 6).

5 Implementing push/enter
The push/enter model uses the stack to store pending arguments, rep-
resented by continuations of form Arg a. Unlike the other continu-
ations, these have no return address. When a function with arity n
is entered, it begins work by grabbing the top n arguments from the
stack (rule FENTER), not by returning to them! This is precisely the
difference alluded to in the Introduction: the function is in control.

How does the function know how many arguments are on the stack?
It needs to know this so that it can perform rule FENTER or PAP1 re-
spectively. In GHC the answer is this: we dedicate a register2, called
Su (“u” for “update”), to point to the topmost update frame or case
frame, rather like the frame pointer in a conventional compiler. Then
the function can see if there are enough arguments by taking the dif-
ference between the stack pointer and Su. (The function knows not
only how many arguments it is expecting, but how many words they
occupy.) This is the so-called argument satisfaction check.

Every function is compiled with two entry points. The fast entry
point is used for known calls; it expects its arguments in registers
(plus some on the stack if there are too many to fit in registers). The
slow entry pointexpects all its arguments on the stack, and begins
by performing the argument-satisfaction check. If the argument- sat-
isfaction check fails, the slow entry point builds a PAP and returns
to the return address pointed to by Su; if it succeeds, the slow entry
point loads the arguments from the stack into registers and jumps (or
falls through, in fact) to the fast entry point.

5.1 Reducing the number of Su pushes
In conventional compilers, the frame pointer is really only needed
to support debugging, and some compilers provide a flag to omit it,
thereby freeing up a register. We cannot get rid of Su altogether, but
when pushing a new frame it is often unnecessary to save Su and
make it point to the new frame. Consider:

case x of { (a,b) -> .... }

We know for sure that x will evaluate to a pair, not to a function!
There is no need to make Su point to the case frame during eval-
uation of x. The only time we need to do so is when the scrutinee
cannot statically be determined to be a non-function type.The clas-
sic example is the polymorphic seq function:

2or a memory location on register-starved architectures

Pending arguments

Regular frame, with return address

Figure 4. Stack layout for push/enter

seq :: a -> b -> b
seq a b = case a of { x -> b }

In some calls to seq, a will evaluate to a function, while in others
it will not. In the former case we must ensure that Su points to the
case frame, so that rule PAP1 applies.

In principle, the same is true about update frames, but in practice
there are several reasons that we want to walk the chain of update
frames (see Section 7) so GHC always saves Su in every update
frame.

To avoid that some case frames have a saved Su and some do not,
we instead never save Su in a case frame. Instead, in the (rare)
situation of a non-data-typed case, we push two continuations, a
regular case continuation, and, on top of it, a seq framecontaining
Su. A seq frame is like an update frame with no update: it serves
only to restore Su before returning to the case frame underneath.

5.2 Accurate stack walking
The most painful aspect of the push/enter model is the problem
of representing Arg continuations, which hold pending arguments.
Consider these functions:

g :: Int -> Int -> Int# -> Double# -> Int
g x = ....

f :: Int -> Int
f x = g x x 3 4.5

Under the push/enter model, we push the pending arguments x, 3,
and 4.5 onto the stack before making the tail call g x. The function
g might compute for a very long time before returning a function that
consumes the pending arguments. During this period, the pending
arguments simply sit on the stack waiting to be consumed.

An accurate garbage collector must be able to identify every pointer
in the stack. The push/enter model leads to stack layout that looks
like Figure 4. Update and case continuations, whose representa-
tion was discussed in Section 4.5, are represented by “regular” stack
frames, consisting of a return address (shown black) on top of a block
of data (shown white) whose exact layout is “known” to the return
address. The garbage collector can use the return address to access
the info table for the return address (Section 4.5 again), just as it
does for a heap-allocated closure. The info table describes the lay-
out of the stack frame, including exactly where in the frame the (live)
pointers are stored, so that the garbage collector can follow them; it
also gives the size of the frame, so that the garbage collector knows
where to start looking for the next frame.

These regular stack frames are the easy (and well-understood) part.
However, between each regular stack frame are zero or more Arg
continuations, or pending arguments (shown grey). The difficulty is
that there is no description of their number or layoutin the stack data
structure. The function that pushed them “knows” what they are, and

10



the function that consumes them knows too — but an arbitrarily long
period may elapse between push and consumption, and during that
time the garbage collector must somehow deal with them. There are
two sub-problems:

� Identifying which are pointers and which are non-pointers; as
the example above showed, there may be a mixture.

� Distinguishing the last pending argument from the next return
address on the stack, which heralds a new stack frame.

One alternative is to have a separate stack for pending arguments,
which solves the second of these sub-problems, but not the first. Or,
the separate stack could be for pending non-pointer arguments only,
which solves the first sub-problem, but not the second. However, a
separate stack carries heavy costs of its own, to allocate it, maintain a
pointer to the stack top, and check for overflow. We do not consider
this alternative further.

Another non-alternative is to use a conservative garbage collector.
Firstly, to plug space leaks we would then have to use extra memory
writes to stub off dead pointers, something the frame layout maps
deal with automatically; this turns out to be very important in prac-
tice. Second, there are other reasons that GHC’s runtime system has
to walk the stack accurately: to black-hole thunks under evaluation,
and to raise exceptions. Third, stacks may have to move in order to
grow; GHC’s lightweight concurrency precludes simply allocating a
gigantic stack for each thread.

Failing these alternatives, the obvious approach is to add a tag
word to each Arg continuation. The tag word distinguishes pointer-
carrying from non-pointer-carrying Arg continuations, specifies the
size of latter kind, and can be distinguished from the return address
that heralds the next regular stack frame. Easy enough, but ineffi-
cient. In the following two sections we describe two optimisations
that GHC uses to reduce the tagging cost.

5.2.1 Omitting tags on pointers
Our first optimisation is to not to tag pointer arguments at all. This is
attractive because pointer arguments dominate (see Section 8). Fur-
thermore it looks relatively easy to distinguish a pointer from the re-
turn address that heralds the next stack frame, whereas non-pointer
arguments, which can hold any bit-pattern whatsoever, cannot be dis-
tinguished in general. We were wrong to think it was easy, though:
the problem of distinguishing pointers from return addresses is much
trickier than it looks, as we now discuss.

GHC allocates some heap objects statically, compiling them directly
into the binary. So we distinguish an object pointer from a return
address in two steps:

Step 1: distinguish a pointer to a dynamic heap object from a static
pointer. Stack-walking aside, the garbage collector needs to
make this distinction frequently, because it needs to know
whether to copy the object referenced by a given pointer or
not. We could do this by examining the info table of the object,
but it’s more efficient if the test can be done without derefer-
encing the pointer and polluting the cache, especially if it turns
out that we aren’t otherwise going to touch the object that it
points to (static objects are assumed to be in the old generation
in GHC’s generational collector, so they rarely get touched).

GHC therefore implements the static/dynamic test without
dereferencing the pointer, using an address-based test – we
know exactly where the dynamic heap is – and we re-use that
test to perform Step 1 of the heap-object/return-address test
when stack-walking.

Step 2: distinguish a pointer to a static object from a return ad-
dress. In earlier versions of GHC we did this by keeping static

objects in a separate linker segment from the code: static ob-
jects are data, whereas return addresses are in the text segment.
Determining the border between text and data can usually be
done, although it is non-portable and usually needs to be imple-
mented in a different way for each new platform the compiler is
ported to. Furthermore, this breaks down when dynamic link-
ing is added to the mix, because there may be many text and
data segments scattered throughout the address space. One al-
ternative, which we used on Win32 systems with DLLs, was
to place a zero word before every static closure and use this
to discriminate, making use of the fact that a return address is
never preceded by a zero word. The problem with this is that it
means dereferencing the pointer, which is something we were
trying to avoid for efficiency reasons.

The problem of distinguishing pointers from return addresses could
be solved in another way: by saving Su in a known place every reg-
ular frame. Then the stack-walker could rely on an Su chain linking
every regular frame, so it would always know where the next regular
frame began. However, building a chain of all frames would impose
a non-trivial run-time cost by increasing memory traffic.

5.2.2 Lazy tagging
Tagging non-pointer pending arguments carries only a modest run-
time cost, because (in Haskell at least) it is rare to call a function
that returns a function that consumes non-pointer arguments. GHC
therefore tags non-pointer Arg continuations staightforwardly, with
a tag word pushed on top of the non-pointer argument, containing
the length in words of the non-pointer argument (usually 1 or 2). A
tag can always be distinguished from a pointer argument, because
pointer arguments never point to very low addresses.

Even tagging non-pointers is tiresome. When calling the fast entry
point of a function, we can pass some arguments in registers, but
when there are too many we pass them on the stack. It would make
sense for the stack layout of these overflow parameters to be the
same as the latter part of the stack layout expected by the slow entry
point (which takes all its arguments on the stack). The latter has
tagged slots for non-pointers, so the former had better do so too.
But we do not want to take the instructions to explicitly tag the slots
when making a fast call — fast calls to functions taking non-pointer
arguments are not at all rare — so we allocate space for the tags but
do not fill the tags in. (In a call to a known function when too many
arguments are supplied, we must generate code to tag the “extra”
arguments but not the “known” ones.)

So the invariant at the fast entry point is that there is space for the
tags of the non-pointer arguments passed on the stack, but these slots
are non necessarily initialised. The fast entry point typically starts
with a heap-overflow check; if it fails, it must remember to fill in the
tags, so that the top frame of the stack is self-describing.

The exact details are unimportant here. The point is that, while tag-
ging non-pointers in the stack is feasible and reasonably efficient, it
imposes a significant complexity burden on both code generator and
the the run-time system.

5.3 Generating C--

Some compilers generate native code directly, but a very popular
alternative route is to generate code in C, or a portable assembly lan-
guage such as C--, leaving to another compiler the tasks of instruc-
tion selection, register allocation, instruction scheduling, and so on.
A significant disadvantage of the push/enter model is that it makes
this attractive route much harder, or at least much less efficient.

The problem, again, is the pending arguments. Suppose that we want
to generate C. We plainly cannot push the pending arguments onto
the C stack, because C controls its own stack layout. There is just
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no way to have C stack frames separated by chunks of pending ar-
guments.

The only way out of this is to maintain a separate stack for pending
arguments. In fact, GHC uses C as a code generator, and it keeps
everythingon the separately-maintained stack: pending arguments,
saved variables, return addresses, and so on. Indeed, GHC does not
use the C stack at all, so we only have to maintain a single stack.

Unfortunately, we thereby give up much of the benefit of the portable
assembly language. If we do not use the C stack, we cannot use C’s
parameter-passing mechanisms. Instead, we pass arguments either
in global variables that are explicitly allocated in registers (using a
gcc directive) or on the explicit stack. We have to perform our own
liveness analysis to figure out what variables are live across a call,
and generate code to save them to to the explicit stack. In short, we
only use C to compile basic blocks, managing the entire call/return
interface manually.

There are other reasons why we could not use C’s stack, however.
There is no easy way to check for stack overflow, or to move stacks
around (both important in our concurrent Haskell system). C may
save live variables across a call, but does not generate stack descrip-
tors for the garbage collector (Section 5.2). Portable exception hand-
ing is tricky. And so on.

C--, on the other hand, is a portable assembly language designed
specifically to act as a back end for high-level-language compilers.
It provides explicit and very general support for tail calls, garbage
collection, exception handling, and concurrency, and so addresses
many of C’s deficiencies. Yet, we have found no general or clean
way to extendC--’s design to incorporate pending arguments. So,
like C, C-- provides no way to push an arbitrary number of words
on the stack that should persist beyond the end of the current call.

The bottom line is this. The pending arguments required by the
push/enter model are incompatible with any portable assembly lan-
guage known to us, except by using that language in a way that viti-
ates many of its advantages. We count this as a serious strike against
the push/enter model.

6 Implementing eval/apply
Next, we turn our attention to the implementation details for
eval/apply. The eval/apply model uses call continuations, of form
(� a1 : : :an), which are represented by a stack frame consisting of
a return address, together with the arguments a1 : : :an. This return
address is entered when a function has evaluated to a value (FUN or
PAP), and returns. This is the moment when the complicated rules
(EXACT, CALLK, PAP2, and so on) are needed, and that involves
quite a lot of code. So we do not generate a fresh batch of code for
each call site; instead, we pre-generate a range of call-continuation
return addresses, for 1, 2, 3, . . . N arguments.

What if we need to push a call continuation for more than N argu-
ments? Then we push a succession of call continuations, each for
as many arguments as possible, given the range of pre-generated re-
turn addresses. In effect, this reverts to something more like the
argument-at-a-time function application process, except that we deal
with the arguments N at a time. We can measure how often this hap-
pens, and arrange to pre-generate enough call continuations to cover
99.9% of the cases (Section 8). The remainder are handled by push-
ing multiple call continuations.

An important complication is that we need different call continua-
tions when some of the arguments are unboxed. Why? Because:
(a) the calling convention for the function that the continuation will
call may depend on the types of its arguments (e.g. a floating-point
argument might be passed in a floating-point register); and (b) the
call-continuation return address must (like any return address) have
layout information to guide the garbage collector. So cannot get

stgApplyNP( f, a, b ) {
/* Apply f to arguments a and b */

switch TYPE(f) {
case THUNK:
fun_code = CODE(f) ;
f = fun_code( f );

/* a,b saved across this call */
jump stgApplyNP( f, a, b )

case FUN:
switch ARITY(f) {

case 1: /* Too many args */
fun_code = CODE(f) ;
f = fun_code( f, a );

/* b saved across this call */
jump stgApplyP( f, b );

case 2: /* Exactly right! */
fun_code = CODE(f) ;
jump fun_code( f, a, b );

other: /* Too few args */
...check for enough heap

space to allocate PAP...
r = ...build PAP for (f a b)...
return( r )

}

case PAP:
switch PAP_ARITY(f) {

case 1: /* Too many args */
f = applyPapN( f, a ) ;
jump stgApplyP( f, b );

case 2: /* Just right */
jump applyPapNP( f, a, b )

other: /* Too few args */
...check for enough heap...
r = ...build PAP for (f a b)...
return( r )

} }

Figure 5. The generic apply function StgApplyNP

away with just N continuations, but (in principle) we need 3N. The
“3” comes from the three basic cases we deal with: pointer, 32-bit
non-pointer and 64-bit non-pointer. There might well be more if, for
example, a 32-bit float was passed in a different register than a 32-
bit integer. Hence the importance of measurements, to identify the
common cases.

6.1 Generic application in more detail
To be more concrete, we will imagine that we compile Haskell into
C-- [13] (we will introduce any unusual features of C-- as we go
along). Here is the code that the call f 3 x, where f is an unknown
function, might generate:

jump stgApplyNP( f, 3, x )

This transfers control — the “jump” indicates a tail call — to a
pre-generated piece of run-time system code, stgApplyNP, where
the “NP” suffix means “one 32-bit non-pointer, and one pointer”.
The first parameter is the address of the closure for f. It’s just as
if the original Haskell call had been stgApplyNP f 3 x, where
stgApplyNP is a known function, so we make a fast call to it.

The run-time system provides a whole bunch of stgApply func-
tions, for various argument combinations. Indeed, we generate them
by feeding the desired argument combinations to a generator pro-
gram.
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Figure 5 shows (approximately) is the code we generate for
stgApplyNP. In this code we assume that TYPE(f) is a macro that
gets the type field from the info table of heap object f, ARITY(f)
gets the arity from the info table of a FUN object, and so on. CODE(f)
gets the fast entry point of the function, which takes the function ar-
guments in registers (plus stack if necessary).

First, the function might be a THUNK; in that case, we evaluate it
(by calling its entry point, passing the thunk itself as an argument),
before looping around to stgApplyNP again.

Next, consider the FUN case, which begins by switching on the arity
of the function:

� case 2: if it takes exactly two arguments, we just jump to
the function’s code, passing the arguments a and b. We also
pass a pointer to f, the function closure itself, because the free
variables of the function are stored therein.

Note that if we end up taking this route, then the function ar-
guments might not even hit the stack: a and b can be passed
in registers to stgApplyNP, and passed again in registers
when performing the final call. This is an improvement over
push/enter, where arguments to unknown function calls are al-
ways stored on the stack.

� case 1: if the function takes fewer arguments than the number
required by f — in this case there is just one such branch — we
must save the excess arguments, make the call, and then apply
the resulting function to the remaining arguments. The code
for an N-ary stgApply must have a case for each i < N. So
we get a quadratic number of cases, but since it’s all generated
mechanically, and the smaller arities cover almost all cases,
this is not much of a problem in practice.

� other: otherwise the function is applied to too few arguments,
so we should build a partial application in the heap.

The third case is that f might be a partial application. The three cases
are similar to those for a FUN, but they make use of an auxiliary fam-
ily of functions applyPapX etc which apply a saturated PAP. This
apply operation is not entirely straightforward, because PAP con-
tains a statically-unknown number of arguments. One solution is to
copy the argument block from the PAP, followed by the argument(s)
to applyPapX to a temporary chunk of memory, and call a separate
entry point for the function that expects its arguments in a contiguous
chunk of memory. The advantage of this approach is that it requires
no knowledge of the calling convention. Another solution (currently
used by GHC) is to exploit knowledge of the calling convention to
make a generic call; in GHC’s case we just copy the arguments onto
the stack.

There are several opportunities for optimisation. First, we can have
specialised FUN types for functions of small arity (1, 2, 3, say); that
way we could combine the node-type and arity tests. Second, a top
level function has no (non-constant) free variables, so there is no
need to pass its function closure as its first argument. We would
need another FUN node type to distinguish this case. At the time of
writing, GHC does not implement either of these optimisations.

6.2 Too many arguments
What do we do with an unknown call for which there is no pre-
generated stgApplyX function? Answer, we just split it into two
(or more) chunks. For example, suppose we only had stgApplyX
functions for a single argument. Then our call f 3 x would compile
to:

f1 = stgApplyN( f, 3 );
jump stgApplyP( f1, x );

Of course, x must be saved on the stack across the call to
stgApplyN.

7 A qualitative comparison
Having described the two implementations, we now summarise the
main differences.

In favour of eval/apply:

� Much easier to map to a portable assembly language, such as
C-- or C.

� No need to distinguish return addresses from heap pointers.
This is a big win (Section 5.2.1).

� No tagging for non-pointers; this reduces complexity and
makes stack frames and PAPs a little smaller.

� No need for the Su pointer, perhaps saving a register; and up-
date frames become one word smaller, because there is no need
to save Su.

� Because the arity-matching burden is on the caller, not
the callee, run-time system support functions, callable from
Haskell, become more convenient to write.

� When calling an unknownfunction with the right number of
arguments, the arguments can be passed in registers rather than
on the stack. Push/enter pretty much mandates passing argu-
ments to unknown functions in memory, on the stack.

In favour of push/enter:

� Appears to be a natural fit with currying.

� Eliminates some PAP allocations compared to eval/apply.

� The payload of a PAP object can be self-describing because the
arguments are tagged. In contrast, an eval/apply PAP object
relies on its FUN to describe the layout of the payload; this re-
sults in some extra complication in the garbage collector, and
an extra global invariant: a PAP must contain a FUN, it cannot
contain another PAP.

Plain differences:

� Push/enter requires a slow entry point for each function, incor-
porating the argument-satisfaction check. Eval/apply does not
need this, but (in some renditions) may require an entry point
in which the arguments are in a contiguous memory block.

� The Su pointer makes it easy to walk the chain of update
frames. That is useful for two reasons. First, at garbage col-
lection time we want to black-hole any thunks that are under
evaluation [7]. Second, a useful optimisation is to collapse
sequences of adjacent update frames into a single frame, by
choosing one of the objects to be updated and making all the
others be indirections to it. Under eval/apply, however, one can
still find the update frames by a single stack walk; but it may
take a little longer because the stack-walk must examine other
frames on the stack in order to hop over them. Notice, though,
that there is nothing to stop us adding an Su register, pointing
to the topmost update frame, to the eval/apply model, if that
turned out to be faster for the reasons just described. We have
not tried this.

From this list we conclude two things. First, it is essentially impos-
sible to come to a rational conclusion about performance based on
these differences. The only way is to build both both models and
measure the difference. Second, the eval/apply model seems to have
decisive advantages in terms of complexity. Yes, the stgApplyX
generator is a new component, but it is well isolated, and not too
large (it amounts to some 580 lines of Haskell including comments).
The big wins are that complexity elsewhere is reduced, and it is eas-
ier to map the code to a portable assembly language.

The bottom line is this: if eval/apply is no more expensive than
push/enter, it is definitely to be preferred.
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Uneval Unknown (%) Known (%)
Program (%) < = > < = >
anna 0.8 0.0 25.5 0.0 0.6 73.8 0.0
cacheprof 0.3 0.0 25.2 0.0 0.2 74.5 0.0
compress 0.0 0.0 1.6 0.0 0.0 98.4 0.0
fem 0.0 0.0 5.4 0.0 0.0 94.6 0.0
fulsom 0.4 0.0 25.0 0.0 0.2 74.8 0.0
hidden 0.1 0.0 13.8 0.0 0.0 86.1 0.1
infer 0.1 0.0 18.8 0.0 0.1 81.1 0.0
scs 0.5 0.0 17.3 0.0 0.0 82.5 0.2
circsim 0.0 0.0 14.5 0.0 0.0 85.5 0.0
fibheaps 5.1 5.8 8.3 0.0 0.0 85.3 0.6
typecheck 0.5 0.0 27.3 0.0 0.5 72.2 0.0
simple 0.0 0.0 49.2 0.0 0.0 50.8 0.0
Min 0.0 0.0 0.0 0.0 0.0 21.2 0.0
Max 18.7 8.3 78.8 1.1 3.9 100.0 1.6
Average 1.0 0.4 20.3 0.0 0.2 79.0 0.1

Figure 6. Anatomy of calls

8 Measurements
Our measurements are made on the Glasgow Haskell Compiler ver-
sion 5.04 (approximately; it does not correspond exactly to any re-
leased version). We made measurements across the entire nofib
benchmark suite of 88 programs; we present detailed figures for a
representative set of a dozen larger benchmarks, but the tables also
give minimum, maximum and mean figures across the whole suite.
These extrema are often due to the micro-benchmarks in the suite,
which we generally do not show individually.

8.1 The anatomy of calls
First of all, we present data on the dynamic frequency of the dif-
ferent categories of function call. All these figures are independent
of evaluation model; they are simply facts about programs in our
benchmark suite, as compiled by GHC.

Figure 6 show the relative dynamic frequency of:

� Calls to an unknown (lambda-bound or case-bound) function
which turned out to be unevaluated (as a percentage of the total
calls),

� Calls to unknown functions with (a) too few arguments, (b)
exactly the right number of arguments, and (c) too many argu-
ments (each as a percentage of the total calls),

� Calls to a known (let-bound) function with (a) too few argu-
ments, (b) exactly the right number of arguments, and (c) too
many arguments (again, each as a percentage of the total calls).

The last six columns of the table together cover all calls, and add up
to 100%. Note that “known” simply means that a let(rec) binding for
the function is statically visible at the call site; the function may be
bound at top level, or may be nested. GHC propagates arity informa-
tion across module boundaries, which greatly increases the number
of known calls. Also notice that every over-saturated application of
a known or unknown function gives rise to a subsequent call to the
unknown function returned as its result; these unknown calls are in-
cluded in one of the “unknown calls” columns. For example, each
execution of the call id f x would count as one call to a known
function (id) with too many arguments, and one call to the unknown
function returned by id.

These numbers lead to three immediate conclusions. First, known
calls are common, and sometimes dominate, but unknown calls can
be the majority in some programs. Unknown calls must be handled
efficiently. Second, known calls are almost always saturated; the ef-
ficiency of handling under- or over-saturated known calls is not im-
portant, and they can be treated like unknown calls (c.f. Section 4.3).

Eval/apply change (∆%)
Code Memory Run-

Program size Alloc Instrs reads writes time
anna -5.1 +1.7 +2.0 +2.5 -3.2 -0.7
cacheprof -4.0 -0.0 +10.7 +10.3 +0.3 +4.1
circsim +0.2 +0.0 +0.2 +1.0 -9.4 -4.7
compress +2.2 -0.0 +1.8 +3.1 +3.6 +1.8
fem -0.8 +0.0 -5.5 -3.2 -7.7 -
fibheaps +1.0 +0.9 +3.3 +4.5 -3.1 -
fulsom -2.1 +0.1 -2.5 -2.3 -7.9 -3.6
hidden -2.4 +0.0 +3.3 +4.0 -6.1 +2.0
infer -1.6 +0.2 +2.4 +2.4 -0.9 -
scs -2.3 +0.0 +0.6 +1.4 -2.4 -3.7
simple -1.8 +0.0 +3.5 +2.5 -4.7 +1.4
typecheck +4.6 +1.2 +6.8 +6.6 -4.7 +3.0
Min -5.1 -2.7 -10.1 -8.0 -13.6 -23.1
Max +7.6 +2.9 +11.6 +20.8 +21.4 +6.8
G. Mean +1.8 +0.1 +0.0 +1.0 -4.8 -2.4

Figure 8. Space and time

Third, even unknown calls are almost always to an evaluated func-
tion with the correct number of arguments, so it is worthwhile op-
timising this case. For example, we can pass the arguments to the
generic apply function in registers, in the hope that it can just pass
them directly to the function.

Figure 7 classifies the unknown calls of Figure 6, by their argument
patterns. This data is helpful in deciding how many different ver-
sions of stgApply to generate. We don’t care about known func-
tions because we generate inline code for their calls. The column
headings use one character per argument to indicate the pattern with
the key: p = pointer, v = void. pp, for example, means a call with two
pointer arguments. A “void” argument is an argument of size zero;
such arguments are used for the “state token” used for implementing
the IO monad. The general conclusion is clear: a double-handful of
9 argument patterns is enough to cope with 99.9% of all situations.

8.2 The bottom line
What really matters in the end is time and space. Figure 8 shows
the percentage change we measured in moving from push/enter to
eval/apply. The runtime figures are wall-clock times, averaged over
5 runs, discounting any programs that ran for less than 0.5 seconds
on our 1GHz Pentium III (around half of the suite). The machine
was otherwise unloaded at the time of the test.

Somewhat to our surprise, there is only a small difference between
the two models, with eval/apply edging out push/enter by around 2-
3% of runtime on average. Under eval/apply, update frames are one
word smaller due to not having to save the Su register in the frame.
Thus, benchmarks which perform a large number of updates did well
under eval/apply. For example, the program which was 23.1% faster,
exp3_8, is a micro-benchmark that spends a lot of its time doing up-
dates. In general, we believe that this change to updates is largely re-
sponsible for the overall reduction in the number of memory writes,
which in turn is responsible for the slight improvement in perfor-
mance of eval/apply compared to push/enter.

Heap allocation is largely unaffected by the change from push/enter
to eval/apply, as can be seen in the “Alloc” column of Figure 8. A
small change in allocation can be explained by two factors. First,
eval/apply will allocate a PAP when returning a function applied to
too few arguments, whereas push/enter may get away without heap
allocation because the function can find its missing arguments on
the stack. Second, the PAPs in eval/apply may be slightly smaller
because there is no need to tag their non-pointer components (Sec-
tion 4.4).
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Argument pattern (% of all unknown calls)
Program v p pv pp ppv ppp pppv pppp ppppp OTHER
anna 0.0 29.6 0.0 69.3 0.0 1.1 0.0 0.0 0.0 0.0
cacheprof 0.0 91.6 0.0 8.1 0.0 0.3 0.0 0.0 0.0 0.0
compress 0.4 73.9 0.0 12.9 0.0 12.7 0.0 0.0 0.0 0.0
fem 0.0 91.3 0.0 8.1 0.0 0.6 0.0 0.0 0.0 0.0
fulsom 0.0 17.5 0.0 82.5 0.0 0.0 0.0 0.0 0.0 0.0
hidden 0.2 48.7 0.0 14.3 0.0 36.8 0.0 0.0 0.0 0.0
infer 0.0 51.8 0.0 48.1 0.0 0.1 0.0 0.0 0.0 0.0
scs 1.4 19.6 0.0 79.0 0.0 0.0 0.0 0.0 0.0 0.0
circsim 0.0 70.2 0.0 8.6 0.0 21.2 0.0 0.0 0.0 0.0
fibheaps 0.0 43.2 13.7 43.1 0.0 0.0 0.0 0.0 0.0 0.0
typecheck 0.0 89.5 0.0 10.5 0.0 0.0 0.0 0.0 0.0 0.0
simple 0.0 20.1 0.0 79.9 0.0 0.0 0.0 0.0 0.0 0.0
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 58.6 100.0 13.7 100.0 15.5 98.9 6.2 11.3 0.3 0.1
Average 5.2 54.4 0.3 34.4 0.3 5.2 0.1 0.1 0.0 0.0

Figure 7. Argument patterns

9 Related work
Two of the most popular and influential abstract machines for lazy
languages, the G-machine [6] and the Three Instruction Machine
(TIM) [3], both use push/enter. As a result, many compilers for lazy
languages, including GHC and hbc, use push/enter.

However Faxén’s OCP compiler for the lazy language Plain uses
eval/apply [4]. Rather than have generic stgApplyXX application
procedures, OCP creates specialised function entry points. For each
function f of arity n, and for each i < n; j <= n� i, OCP makes an
entry point f_i j that expects to find i arguments in a PAP object, and
j extra arguments passed in registers. That looks like an awful lot of
entry points, but a global flow analysis allows OCP to prune many
entry points that cannot be used. The possibility of such speciali-
sation is an additional benefit of eval/apply (Boquist [1] describes
an extreme version). Eager Haskell, an unusual implementation of
Haskell based on eager evaluation, also uses eval/apply [10].

Caml, a call-by-value language, uses push/enter for the interpreter
[9], but eval/apply for the compiler, largely for the reasons outlined
in Section 7.

10 Conclusions
Our main conclusion is easy to state: for a high-performance, com-
piled implementation of a higher order language, use eval/apply!
There is not much to choose between the two models on perfor-
mance grounds, and eval/apply makes it noticeably easier to manage
the complexity of a compiler and runtime system for a higher order
language, as Section 7 explained. We are confident of this result for
a non-strict language, and we believe that the benefit is likely to be
more pronounced for a strict one.

Many of the complexities of push/enter are caused by efficiency
hacks, however. For an interpreter, where performance is not such
an issue, these hacks are not important, and push/enter may well be
a more elegant solution.
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