
Comparing the performance of concurrent linked-list
implementations in Haskell

Martin Sulzmann
IT University of Copenhagen, Denmark

martin.sulzmann@gmail.com

Edmund S. L. Lam
National University of Singapore,

Singapore
lamsoonl@comp.nus.edu.sg

Simon Marlow
Microsoft Research Cambridge, UK

simonmar@microsoft.com

Abstract
Haskell has a rich set of synchronization primitives for implement-
ing shared-state concurrency abstractions, ranging from the very
high level (Software Transactional Memory) to the very low level
(mutable variables with atomic read-modify-write).

In this paper we perform a systematic comparison of these differ-
ent concurrent programming models by using them to implement
the same abstraction: a concurrent linked-list. Our results are some-
what surprising: there is a full two orders of magnitude difference
in performance between the slowest and the fastest implementation.
Our analysis of the performance results gives new insights into the
relative performance of the programming models and their imple-
mentation.

Finally, we suggest the addition of a single primitive which in our
experiments improves the performance of one of the STM-based
implementations by more than a factor of 7.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Languages, Performance

1. Introduction
As programmers we are faced with a choice between a variety
of synchronization models when implementing shared-state con-
currency abstractions. Each model typically offers a unique trade-
off between composability, scalability, and absolute performance.
Knowing which programming model to use is a skill in itself.

In this paper we study the differences between the synchronization
models offered by Haskell [11], in particular those implemented in
the Glasgow Haskell Compiler (GHC) [4]. The three main synchro-
nization models supported by GHC are
• STM: Software Transactional Memory [5].
• MVar: an elementary lock-based synchronization primitive [12].
• IORef and atomicModifyIORef: low-level synchronization

using mutable variables and an atomic read-modify-write op-
eration.

We are interested in the following questions:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’09, January 20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-417-1/09/01. . . $5.00.

• How much overhead is caused by each synchronization model
in GHC?

• How well does each synchronization model scale with the num-
ber of processor cores?

• How many processor cores are needed to out-perform a sequen-
tial implementation?

• Which other aspects, if any, may influence the choice of syn-
chronization model?

There is very little previous work that addresses these issues, and
what there is tends to focus purely on STM performance and scal-
ability (see Section 5).

In summary, we make the following contributions:

• We apply established methods to implement a highly concurrent
linked-list using each of GHC’s synchronization models (Sec-
tion 3). We have two STM-based algorithms, and since STM is
also able to model the two other forms of synchronization we
have a total of six implementations to compare.

• We perform detailed experiments to evaluate the relative trade-
offs in each implementation and also draw a comparison with a
sequential implementation (Section 4).

• We propose the addition of a single primitive which improves
the performance of one of the STM-based algorithms by more
than a factor of 7 (Section 4.1).

We discuss related work in Section 5. The upcoming section gives
an introduction to the synchronization primitives available in GHC.

2. Synchronization Primitives in GHC
In the following section we describe the three basic models of
concurrent synchronization available in GHC, starting from the
highest-level (STM), and ending with the lowest-level (mutable
variables with atomic read-modify-write).

2.1 Software Transactional Memory (STM)

STM was added to GHC in 2005 [5] as a way to program concur-
rent synchronization in a way that is composable, in the sense that
operations that modify shared state can safely be composed with
other operations that also modify shared state.

The basic data object is the TVar, or transactional variable. A trans-
action is a computation performed over a set of TVars, yielding a
result; each transaction is performed atomically. The implemen-
tation technique that makes transactions viable is optimistic con-
currency; that is, all transactions run to completion under the as-
sumption that no conflicts have occurred, and only at the end of the
transaction do we perform a consistency check, retrying the trans-
action from the start if a conflict has occurred. This is “optimistic”

in the sense that it performs well if conflicts are rare, but poorly if
they are common. If conflicts are common (many transactions mod-
ifying the same state), then optimistic concurrency can have worse
performance that just sequentializing all the transactions using a
single global lock.

It is important that a transaction can modify only TVars, because
if the transaction is found to be in conflict then its effects must be
discarded, and this is only possible if the effects are restricted to a
known class of effects that can be undone. In Haskell we have the
luxury of being able to restrict effects using the type system, and
so for STM there is a new monad, STM, whose only stateful effects
are those that affect TVars:

atomically :: STM a -> IO a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
retry :: STM ()

Here is a simple STM example to model an ”atomic” bank transfer.

transfer :: TVar Int -> TVar Int -> Int -> IO ()
transfer fromAcc toAcc amount =
atomically $ do

f <- readTVar fromAcc
if f <= amount
then retry
else do

writeTVar fromAcc (f - amount)
t <- readTVar toAcc
writeTVar toAcc (t + amount)

We transfer amount currency units from fromAcc to toAcc. If the
balance of fromAcc is insufficient we simply retry. That is, we
abort the transaction and try again. There is no point in re-running
the transaction if fromAcc has not changed. Hence, the transaction
simply blocks until fromAcc has been updated.

To summarize, programming with STM has two advantages. It is
straightforward to compose ”little” STM computations such as

writeTVar fromAcc (f-amount)

with other STM computations to form a ”bigger” STM computa-
tion (the actual bank transfer). Furthermore, the programmer does
not need to worry in which order to acquire (i.e. lock) the two ac-
counts. STM computations are executed optimistically. For our ex-
ample, this means that if there are two concurrent transfers involv-
ing the same set of accounts, (1) neither transaction will block the
other, instead (2) the STM run-time optimistically executes both
transactions but only one of them can commit and the other is re-
tried. Thus, STM avoids common pitfalls when programming with
”locks” where the programmer carefully has to acquire resources
in a specific order to avoid deadlocks.

Next, we take a look at MVars, an elementary lock-based synchro-
nization primitive in Haskell.

2.2 MVars

The intermediate-level synchronization method supported by GHC
is the MVar, with the following operations:

newMVar :: a -> IO (MVar a)
newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

An MVar is like a one-place channel; it can be either full or empty.
The takeMVar operation returns the value if the MVar is full or

blocks if the MVar is empty, and putMVar fills the MVar if it is
empty or blocks otherwise.

It is possible to implement the semantics of MVar using STM, al-
though without some of the useful operational properties of the na-
tive implementation. Here is the STM implementation of MVar and
takeMVar:

newtype MVar a = MVar (TVar (Maybe a))

takeMVar :: MVar a -> IO a
takeMVar (MVar tv) =
atomically $ do

m <- readTVar tv
case m of
Nothing -> retry
Just a -> do

writeTVar tv Nothing
return a

This is a reasonable implementation of takeMVar in that it has the
same blocking behavior as the native implementation: the same
set of programs will deadlock with this implementation as would
with the native implementation. However, the STM implementation
is less useful in two ways:

• fairness. The native implementation of MVar holds blocked
threads in a FIFO queue, so a thread is never blocked indefi-
nitely as long as the MVar is being repeatedly filled (resp. emp-
tied).

• single-wakeup. When there are multiple threads blocked in
takeMVar on a single MVar, and the MVar is filled by an-
other thread, then the STM implementation will wake up all
the blocked threads. In this case we know that only one of these
threads will succeed in its blocked operation and the others will
all block again, but the STM implementation in the runtime isn’t
aware of this property and has to assume that any subset of the
blocked transactions can now succeed. The native MVar imple-
mentation on the other hand will wake up only one thread, and
hence will scale more effectively when there is high contention
for an MVar.

In this paper we use MVar primarily to implement the combination
of a mutex and a mutable variable. Taking the MVar is equivalent
to acquiring the lock and reading the variable, filling the MVar
is equivalent to writing the variable and releasing the lock. As
with traditional mutexes, when taking multiple MVars we must
be careful to take them in a consistent order, otherwise multiple
threads trying to take an overlapping set of MVars may deadlock.

2.3 IORefs + atomicModifyIORef

This is the lowest level synchronization method available in GHC,
and corresponds closely to compare-and-swap-style operations in
other languages.

An IORef is a mutable variable, with the following basic opera-
tions:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO a

corresponding to creation, reading and writing respectively.

One might ask what the memory model is for IORefs: for example,
are writes made by one thread always observed in order by another
thread? Attempts to nail down these issues have lead to significant
complexities in other language definitions, for example C++ [2]

and Java [8]. In Haskell, we currently use a model of complete
sequential consistency: all writes are observed in the order they
are performed. It turns out that this doesn’t imply any significant
burden on the compiler beyond what the compiler already has to
do to ensure safety; namely that when a thread calls readIORef
and then inspects the object returned, the object it reads is actually
present. If writes were not ordered in the underlying machine, we
might see the write to the IORef but not the writes that create
the object that it points to, for example. Implementing this safety
guarantee implies the use of memory barriers on some types of
processor, and typically such memory barriers will also provide
sequential consistency for readIORef and writeIORef.

Still, readIORef and writeIORef alone are not enough to pro-
gram most concurrent algorithms, normally we require at least an
atomic read-modify-write operation. In Haskell, the operation we
provide is1

atomicModifyIORef :: IORef a -> (a -> (a,b)) -> IO b

The behavior of atomicModifyIORef can be understood as being
equivalent to the following:

atomicModifyIORef r f = do
a <- readIORef r
let p = f a
writeIORef r (fst p)
return (snd p)

with the important exception that the whole operation is performed
atomically with respect to other threads. The reason it can be
performed atomically is Haskell’s lazy evaluation: the function f is
not actually called during atomicModifyIORef. Both the contents
of the IORef and the value returned are thunks (also known as
suspensions) that will demand the value of r, and hence call f,
when either of their values are demanded.

The implementation of atomicModifyIORef in the runtime sys-
tem looks much like the definition above, except that the final
writeIORef is replaced by a compare-and-swap: if the current
value of the IORef is still a, then replace it with fst r, otherwise
loop back to the readIORef again. In some ways this is like a mini-
transaction over a single variable, and indeed in one of the examples
we consider later we do use STM to model atomicModifyIORef
in order to make a direct comparison between the two.

In contrast to MVars, atomicModifyIORef can be used to imple-
ment non-blocking algorithms, in the sense that a thread can always
make progress even if many other threads in the system are stalled.
STM also has non-blocking properties, but it suffers from other
pathologies, such as discrimination against long-running transac-
tions (of course, steps can be taken to mitigate these effects). In the
next section, we make use of GHC’s synchronization primitives to
implement several variants of concurrent singly-linked lists.

3. Case Study: Concurrent Singly-Linked List
We consider a standard singly-linked list structure where we use
(special) sentinel nodes to represent the head and the tail of the list.

data List a
= Node { val :: a,

next :: PTR (List a) }
| Null

data ListHandle a

1 the origins of this operation are not clear, but it emerged during a design
discussion on the Haskell FFI mailing list in October 2002.

Initial list:

1 // 2 // 3 // 4

Concurrent operations: delete 2 || delete 3

One possible execution that gives rise to an inconsistent result:

Step 1: delete 2

1
&&

2 // 3 // 4

Step 2: delete 3

1
&&

2 883 // 4

Figure 1. Critical sections

= ListHandle { headList :: PTR (PTR (List a)),
tailList :: PTR (PTR (List a)) }

The list supports the following functionality:

newList :: IO (ListHandle a)
addToTail :: ListHandle a -> a -> IO (PTR (List a))
find :: Eq a => ListHandle a -> a -> IO Bool
delete :: Eq a => ListHandle a -> a -> IO Bool

newList creates an empty new list. We consider unsorted linked
lists. Hence, addToTail inserts an element by adding it to the tail,
returning a reference to the newly added node. The find operation
traverses the list starting from the head node and searches for a
specified element, until the element is found or the tail of the list is
reached. Finally, delete removes an element from the list.

Our lists are not ordered, and neither do we provide an operation to
insert an element anywhere except at the end. It would be possible
to change our algorithms to support ordered lists with insertion,
although that would certainly add complexity and would not, we
believe, impact our results in any significant way.

In the following, we consider several concurrent implementations
where we replace PTR by TVar, MVar and IORef.

The challenge is to avoid inconsistencies by protecting critical sec-
tions. Figure 1 shows that without any protection (synchronization),
concurrent deletion of elements 2 and 3 can lead to a list where el-
ement 3 is still present. In turn, we consider several approaches to
preventing this from happening.

3.1 Lock-free linked list using STM

3.1.1 Straightforward Version

The linked list is of the following form.

data List a = Node { val :: a,
next :: TVar (List a) }

| Null
| Head { next :: TVar (List a) }

We use shared pointers, TVars, to synchronize the access to shared
nodes. To ensure consistency we simply place each operation in an
STM transaction. The complete definition of all four functions is

given in Table 1. There are no surprises, we can effectively copy
the code for a sequential linked list and only need to execute the
entire operation inside an atomically statement.

We straightforwardly obtain a correct implementation of a concur-
rent linked list. However, this implementation has severe perfor-
mance problems as we discuss in detail in Section 4. The main
problem is that because each transaction encompasses the entire
traversal of the list, any transaction which modifies the list will
conflict with any other transaction on the list. This implementa-
tion does not have the non-interference properties that we desire,
namely that multiple threads should be able to update different parts
of the list concurrently.

3.1.2 Dissecting Transactions

There are several approaches for dissecting a larger transaction into
smaller pieces without compromising consistency (i.e. the linked
list operations give us the correct result). One approach is to extend
the STM programming model with a way to release parts of the
transaction that are no longer required [13]. The solution we choose
here is to split up the deletion of nodes into two steps [6].

In case of a delete, we perform a ”logical” delete where we only
mark the node as deleted. Any operation traversing through a log-
ically deleted node can then ”physically” remove this node by
swinging the parent’s next pointer to the next point of the child.
Of course, this operation must be performed atomically. That is,
we must ”abort” a physical delete if the parent node has changed
(for example, has been deleted in the mean time).

For example, given the initial list:

1 // 2 // 3 // 4

Concurrent execution of delete 2 || delete 3 leads to the
intermediate result (assuming that delete 2 takes place first)

Step 1: delete 2

1
''

2d // 3 // 4

We write lower-case ’d’ to indicate that a node has been logically
deleted. Execution of the remaining operation delete 3 yields

1
''

2d // 3d // 4

We manage to logically delete the node but physical deletion fails
because the parent has been deleted in the mean time. Physical
deletion of node 3 will take place in case of a subsequent traversal
of the list.

To implement this idea, we make use of the following refined list
structure where we explicitly can mark nodes as (logically) deleted.

data List a = Node { val :: a
, next :: TVar (List a) }

| DelNode { next :: TVar (List a) }
| Null
| Head { next :: TVar (List a) }

The deletion algorithm is shown in Figure 2. We assume that x is
the value to be deleted. The go function traverses the list by holding
a pointer to the parent (previous) node. Recall that there is always
a static head node. Hence, all nodes that will ever be subjected to a
delete always have a parent node.

go :: TVar (List a) -> IO Bool
go prevPtr = loopSTM $ do

prevNode <- readTVar prevPtr
let curPtr = next prevNode
curNode <- readTVar curPtr

case curNode of
Node {val = y, next = nextNode }

| (x == y) ->
-- perform logical delete
do writeTVar curPtr

(DelNode {next = next curNode})
return (return True)

| otherwise ->
-- continue
return (go curPtr)

Null -> return (return False)

DelNode {next = nextNode } ->
-- perform physical delete
case prevNode of

Node {} -> do
writeTVar prevPtr

(Node {val = val prevNode,
next = nextNode})

return (go prevPtr) -- (***)
Head {} -> do

writeTVar prevPtr
(Head {next = nextNode})

return (go prevPtr)
DelNode {} ->

return (go curPtr) -- (+++)

loopSTM :: STM (IO a) -> IO a
loopSTM stm = do

action <- atomically stm
action

Figure 2. STM lazy deletion algorithm

The returned action can be viewed as a continuation. For example,
in case the current node is (logically) deleted and the parent node
is still present (***), we swing the parent’s next pointer to the
current node’s next pointer. The STM guarantees that this operation
is executed atomically. If successful we ”go” to the parent, that is,
we stay where we are because the next node we visit is the child of
the just physically deleted node. In case the parent itself is deleted
(+++), we do nothing and simply move ahead in the list.

A complete implementation is given in Table 2.

While this algorithm increases performance and concurrency sig-
nificantly with respect to the straightforward STM algorithm, our
experimental results (Section 4) indicate that the overhead of STM
is still fairly high and therefore we need a number of processor
cores to outrun a sequential linked list implementation.

3.2 Hand-over-hand locking using MVars

Instead of protecting the parent and child node via STM, we can
also use fine-grained locking via MVars. The standard method is
to use hand-over-hand locking (also known as lock coupling) [1]
where we acquire the lock for the child before releasing the par-
ent’s lock. There is no need to introduce logically deleted nodes
because we retain exclusive access to a node by using locks. Ta-
ble 3 contains the details.

3.3 Lock-free linked list using atomic compare-and-swap

To actually challenge the sequential list implementation, we make
use of a CAS (atomic compare-and-swap) operations. A CAS only

protects a single node which is in fact sufficient to implement the
’logical delete’ algorithm discussed earlier.

Here are some code snippets of the CAS implementation.

...
DelNode { next = nextNode } ->

case prevNode of
Node {} -> do b <- atomCAS

prevPtr -- address
prevNode -- old value
(Node {val = val prevNode,

next = nextNode})
-- new value

if b -- check if update
-- took place

then go prevPtr
else go curPtr

Head {} -> do b <- atomCAS
prevPtr
prevNode
(Head {next = nextNode})

if b then go prevPtr
else go curPtr

DelNode {} -> go curPtr
...

Like in the dissected STM-based implementation, we only perform
a physical delete if the parent is still present. Then, we atomically
swing the parent’s next pointer to the next pointer of the to-be-
deleted node. We use a CAS to perform this atomic update oper-
ation. In the event that this operation fails (indicated by b being
False), we simply move ahead in the list.

In GHC, there are at least two ways to implement a CAS (atomic
compare-and-swap) operation. We can either use the atomicModifyIORef
primitive

atomCAS :: Eq a => IORef a -> a -> a -> IO Bool
atomCAS ptr old new =

atomicModifyIORef ptr (\ cur -> if cur == old
then (new, True)
else (cur, False))

or we can use STM

atomCAS :: Eq a => TVar a -> a -> a -> IO Bool
atomCAS ptr old new =

atomically $ do
cur <- readTVar ptr
if cur == old
then do writeTVar ptr new

return True
else return False

The complete details of a CAS-based linked list implementation
using the first alternative are given in Table 4. In terms of perfor-
mance, the atomicModifyIORef version of CAS is vastly superior
to the STM encoding of CAS. Section 4 provides some concrete
measurements.

3.4 Composability

We should consider which of our algorithms are composable with
other concurrent abstractions, since it is likely that clients of the
concurrent linked list will be using it in a context in which there are
other shared data objects.

The pure STM implementation (Section 3.1.1) is the only algorithm
that is completely composable, in the sense that we can use its op-
erations as part of a larger concurrency abstraction with composite
invariants.

None of the other algorithms have this property. Furthermore, only
the lazy-delete and CAS algorithms (Sections 3.1.2 and 3.3 respec-

0.1

1

10

100

1000

1 2 3 4 5 6 7 8

Ti
m

e
(l

o
g

sc
al

e)

Number of processors

CAS

CASusingSTM

LAZY

MLC

MLCusingSTM

STM

Figure 3. Benchmark timings

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Sp
e

ed
u

p

Number of processors

CAS

CASusingSTM

LAZY

MLC

MLCusingSTM

STM

Figure 4. Benchmark scaling

tively) are lock-free, in that any thread performing one of these
operations cannot prevent another thread from making progress.

3.5 Safety

Which of these algorithms are safe, in the sense that if a thread
is interrupted in the middle of an operation by an asynchronous
exception [9], the invariants of the data structure are preserved?
In fact the only algorithm that is not safe in this respect is hand-
over-hand, since it uses real locks. In order to make it safe we
would have to use appropriate exception handlers to restore the
locks. This is not difficult—the MVar library includes suitable safe
abstractions—but it does add a significant performance overhead.
Nevertheless, if we were to provide this implementation in a library,
asynchronous-exception safety would be an essential property. The
version we describe here is therefore useful only to illustrate the
relative performance of hand-over-hand locking with MVar against
the other algorithms.

4. Empirical Results
We measured the absolute performance of each of the algorithms
on an 8-core multiprocessor (a dual quad-core Intel Xeon 1.86GHz
with 16GB of memory). We were using GHC 6.10.1.

To benchmark each algorithm, we randomly generated a test data
consisting of an initial list of 3000 elements and 8 lists of 3000
operations in the ratio of 2 finds to 1 delete to 4 inserts2. Each
benchmark run was measured by loading the test data into memory,
generating the initial linked list, and then starting the clock before
creating 8 threads, each performing one of the pre-generated lists of
operations. When all threads have finished, the clock was stopped
and the elapsed time reported. We took the average of 3 runs of
each benchmark.

In the figures we use the following abbreviations for each algo-
rithm:

• STM. The naive STM implementation (Section 3.1.1).
• LAZY. Dissected STM transactions (Section 3.1.2).
• MLC. Hand-over-hand locking using MVars (Section 3.2).
• MLCusingSTM. Identical to the MLC algorithm, but using the

STM implementation of MVars (Section 2.2).
• CAS Lock-free compare-and-swap implementation using IORef

and atomicModifyIORef (Section 3.3).
• CASusingSTM Identical to the CAS algorithm, but using STM

to implement compare-and-swap.

Although GHC includes a parallel garbage collector, our bench-
marks were conducted with it disabled for the following reason:
we discovered that the linear linked-list structure in the heap ap-
parently does not allow for optimal parallel garbage collection. As
such, the parallel collector usually did not improve performance of
the programs, and at times even made things worse.

GHC’s garbage collector currently performs poorly when there are
a large number of TVars in the heap: it visits all the TVars in each
GC cycle, rather than just those that have been mutated since the
last GC. In contrast, it is more efficient in its treatment of MVars and
IORefs. While this is a real issue that does affect STM programs,
it is also not an inherent limitation of STM, and is likely to be fixed
in a future version of GHC. For thease reasons we decided to avoid
unfairly biasing the results against STM, and explicitly set a larger
heap size (32MB) which reduced the number of GC cycles and the
overall GC cost.

We wish to highlight that the programs in these benchmarks re-
vealed some issues in GHC’s optimiser, which prevented us from
obtaining the best absolute performance for these programs. In par-
ticular, the linked-list data structures have an extra layer of boxing:
it should be possible to eliminate the IORef, TVar and MVar boxes
inside each linked list node. When we tried this GHC did indeed
eliminate the boxes, but unfortunately this led to poor code being
generated for other parts of the algorithm, and the resulting perfor-
mance was worse. Fortunately these issues were common across all
the benchmarks, so while the absolute performance of these bench-
marks is not likely to be optimal, the relative performance between
the algorithms is still consistent.

The relative performance of each algorithm is given in Figure 3.
Note that the Y axis is a logarithmic scale: there is approximately
an order of magnitude difference between STM and the cluster of
algorithms in the middle (LAZY, MLC, MLCusingSTM, CASus-

2 In retrospect, this is probably an unrealistic workload, being too heavily
weighted to writing operations. In future work we intend to experiment with
different workloads.

ingSTM), and another order of magnitude faster is the CAS im-
plementation. Figure 4 shows how each algorithm’s performance
scales with the number of processor cores.

4.1 Analysis

We expected the naive STM implementation to perform poorly -
indeed it scales worse as the length of the list increases, so we
could make it look arbitrarily bad by simply running larger tests.
This much is not surprising; the problem is well-known. The LAZY
(dissected STM) implementation improves on this as expected, and
performs more competitively against the hand-over-hand locking
implementations, with good scalability results.

We expect hand-over-hand locking to scale poorly, because multi-
ple threads operating on the list cannot overtake each other, since
each thread always has at least one list node locked. Similarly, we
expect STM to scale poorly, because each transaction that modi-
fies the list will tend to invalidate every other transaction on the
list. However, thanks to STM’s optimistic concurrency and the fact
that not every transaction modifies the list, STM still scales slightly
better than hand-over-hand locking.

The absolute performance of MVar is better than STM because
STM has a certain amount of per-transaction overhead, so on a sin-
gle processor we see MLC performing better than any of the STM-
based implementations. However the poor scalability of MLC re-
sults in its slower performance against CASusingSTM at 4 cores
and above.

The MVar implementation can suffer from poor scheduling deci-
sions when the number of threads exceeds the number of cores.
When a thread holding a lock is descheduled, this will block many
of the other threads in the system, until the original thread is sched-
uled again and releases the lock. This is supported by the fact that
the performance of both MLC and MLCusingSTM jumps when we
reach 8 cores (see Figure 4), when the number of cores equals the
number of threads, eliminating this scheduling effect.

The difference between CAS and CASusingSTM (nearly an order
of magnitude) is somewhat surprising, but it can be explained by
the overhead of list traversal. Traversing list nodes in the CAS
algorithm uses only readIORef, which is a single memory read
and is therefore extremely cheap. In contrast, CASusingSTM must
read the pointers between list nodes using readTVar, which entails
performing a complete transaction, a significantly larger overhead.
However, since these transactions are just reading a single TVar,
the transaction is superfluous: it should never have to retry. In prac-
tice however, these transactions do sometimes retry. This is because
in GHC, validating a transaction consists of attempting to lock each
of the TVars involved in the transaction, and if any of these TVars
are already locked by another CPU, the transaction is retried. As a
result, even transactions that consist of a single readTVar can fail
and retry. Of course, it would be rather straightforward to optimise
GHC’s STM implementation to handle this special case by spot-
ting these degenerate transactions at commit-time, but a simpler
approach is to provide a new operation

readTVarIO :: TVar a -> IO a

which just returns the current value of the TVar, with no transaction
overhead. There is only one minor complication: if the TVar is
currently locked by another STM transaction in the process of
committing, readTVarIO has to wait. This can be done with a
simple busy-wait loop.

We implemented this operation and measured the effect of using
it in CASusingSTM, and it does indeed improve the efficiency of
CASusingSTM dramatically, to within 30–40% of CAS (more than
a factor of 7 improvement). The remaining difference is presumably

due to the overhead of the STM transactions required to perform the
real atomic operations.

Interestingly, making this improvement to CASusingSTM also re-
duced its scaling properties: the improved version only scaled by
just over a factor of 2 on 8 processors, whereas the unoptimised
CASusingSTM scales by nearly a factor of 6 on 8 processors. This
implies that the overhead (expensive list traversals via readTVar)
we eliminated accounts for a significant portion of the parallelism
achieved from running with more processors.

The CAS algorithm also scales by only around a factor of 3 on 8
processors, so we believe that both CAS and the optimised CASus-
ingSTM are experiencing the hardware-imposed overheads due to
multiple processors modifying shared data structures.

For completeness, the performance of a purely sequential imple-
mentation (using IORef with no atomic operations, and no lazy
delete) is around 2% better than CAS on a single processor with
this hardware. So on two or more processors, CAS easily outper-
forms the sequential implementation.

5. Related Work
There has been considerable amount of prior work on concurrent
linked list algorithms and their efficient parallel implementation.
State of the art implementations employ non-blocking algorithms
which either use (dissected) STM operations or CAS (atomic
compare-and-swap) operations. For example, see [3] and the ref-
erences therein. We have transferred these ideas to the Haskell
setting using GHC’s synchronization primitives. We have yet to
compare measurements/analysis results which we expect will be
a challenging task due to differences in the run-time environment
and computer architecture used. For example, the algorithms in
[3] are implemented in C++ and tested on a Sun Sparc many core
architecture.

In the context of Haskell, the only related work we are aware of
concentrates exclusively on the performance of STM [13, 10]. The
work in [13] extends the Haskell STM interface with an unsafe
unreadTVar primitive which supports the early release of transac-
tional variables. Such an extension avoids false retries in case of
long-running transactions, but obviously requires great care by the
programmer. A comprehensive study of the performance of GHC’s
STM mechanism is given in [10]. One of the benchmarks measures
an algorithm equivalent to our LAZY (dissected STM), and mea-
surements show that a significant amount of run-time is spent on
STM operations such as validate and commit. As we have shown
here, we can drastically improve the performance of an STM-based
algorithm by introducing a safe readTVarIO primitive (see CA-
SusingSTM).

6. Conclusion
We have presented a total of six algorithms for a concurrent singly-
linked list: STM, dissected STM, hand-over-hand (using either
MVar or STM), and compare-and-swap (using either IORef or
STM).

If we consider performance alone, the compare-and-swap algo-
rithm using IORef is superior to all the others by almost an or-
der of magnitude. So ignoring other concerns, highly-tuned con-
current data structures should use this method. However, we have
also shown that if a new operation readTVarIO is added, it is possi-
ble to achieve close to the performance of IORef using STM (Sec-
tion 4.1), and in some cases this is likely to be an attractive solution,
since it retains the ability to use transactions for complex manipu-
lations of the data structure, cases where using compare-and-swap
is likely to be overly difficult to get right.

If composability is required, then the pure STM algorithm seems
the only option, and to improve its performance one possibility is
to search for optimisations within the STM framework, either using
automatic techniques or help from the programmer [13]. However,
recent work [7] suggests that it is possible to recover the benefits of
a high-level STM abstraction with the performance of a low-level
implementation (e.g. either based on atomic compare-and-swap or
using locks). This seems like an attractive option which we plan to
pursue in future work.

One clear result is that on its own, hand-over-hand locking is not
a good choice. Not only does it scale very poorly, but it is non-
compositional and the implementations we presented here do not
include the exception-safety that would be necessary if we were to
provide it as a library (Section 3.5), and adding this would reduce
its performance further.

Acknowledgements
We thank the reviewers for their comments on a previous version
of this paper.

References
[1] R. Bayer and M. Schkolnick. Concurrency of operations on b-trees.

pages 129–139, 1988.

[2] H.-J. Boehm and S. V. Adve. Foundations of the c++ concurrency
memory model. In Proc. of PLDI’08, pages 68–78. ACM Press, 2008.

[3] K. Fraser and T. Harris. Concurrent programming without locks.
ACM Trans. Comput. Syst., 25(2):5, 2007.

[4] Glasgow haskell compiler home page. http://www.haskell.org/ghc/.

[5] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable
memory transactions. In Proc. of PPoPP’05, pages 48–60. ACM
Press, 2005.

[6] T. L. Harris. A pragmatic implementation of non-blocking linked-
lists. In LNCS, volume 2180, pages 300–314. Springer-Verlag, 2001.

[7] M. Herlihy and E. Koskinen. Transactional boosting: a methodology
for highly-concurrent transactional objects. In Proc. of PPoPP ’08,
pages 207–216. ACM Press, 2008.

[8] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
Proc. of POPL’05, pages 378–391. ACM Press, 2005.

[9] S Marlow, SL Peyton Jones, A Moran, and J Reppy. Asynchronous
exceptions in Haskell. In ACM Conference on Programming
Languages Design and Implementation (PLDI’01), pages 274–285,
Snowbird, Utah, June 2001. ACM Press.

[10] C. Perfumo, N. Sönmez, S. Stipic, O. S. Unsal, A. Cristal, T. Harris,
and M. Valero. The limits of software transactional memory (stm):
dissecting haskell stm applications on a many-core environment. In
Proc. of 5th Conference on Computing Frontiers, pages 67–78. ACM
Press, 2008.

[11] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

[12] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In
Proc. of POPL’96, pages 295–308. ACM Press, 1996.

[13] N. Sonmez, C. Perfumo, S. Stipic, A. Cristal, O. S. Unsal, and
M. Valero. unreadTVar: Extending haskell software transactional
memory for performance. In Proc. of Eighth Symposium on Trends in
Functional Programming (TFP 2007), 2007.

A. Table of Code Fragments

data List a = Node { val :: a,
next :: TVar (List a) }

| Null
| Head { next :: TVar (List a) }

data ListHandle a
= ListHandle { headList :: TVar (TVar (List a)),

tailList :: TVar (TVar (List a)) }

newList :: IO (ListHandle a)
newList =
do null <- atomically (newTVar Null)

hd <- atomically (newTVar (Head {next = null }))
hdPtr <- atomically (newTVar hd)
tailPtr <- atomically (newTVar null)
return (ListHandle {headList = hdPtr,

tailList = tailPtr})

addToTail :: ListHandle a -> a -> IO (TVar (List a))
addToTail (ListHandle {tailList = tailPtrPtr}) x = do

tPtr <- atomically (do
null <- newTVar Null
tailPtr <- readTVar tailPtrPtr
writeTVar tailPtr

(Node {val = x, next = null})
writeTVar tailPtrPtr null
return tailPtr

)
return tPtr

find :: Eq a => ListHandle a -> a -> IO Bool
find (ListHandle {headList = ptrPtr}) i =

atomically (
do ptr <- readTVar ptrPtr

Head {next = startptr} <- readTVar ptr
find2 startptr i)

where
find2 :: Eq a => TVar (List a) -> a -> STM Bool
find2 curNodePtr i = do

curNode <- readTVar curNodePtr
case curNode of

Null -> return False
Node {val = curval, next = curnext} ->

if (curval == i) then return True
else find2 curnext i

delete :: Eq a => ListHandle a -> a -> IO Bool
delete (ListHandle {headList = ptrPtr}) i =

atomically (
do startptr <- readTVar ptrPtr

delete2 startptr i)
where
delete2 :: Eq a => TVar (List a) -> a -> STM Bool
delete2 prevPtr i = do
prevNode <- readTVar prevPtr
let curNodePtr = next prevNode

--head/node have both a next field
curNode <- readTVar curNodePtr

case curNode of
Null -> return False
Node {val = curval, next = nextNode} ->

if (curval /= i)
then delete2 curNodePtr i -- keep searching
else

-- delete element (ie delink node)
do case prevNode of

Head {} -> do
writeTVar prevPtr

(Head {next = nextNode})
return True

Node {} -> do
writeTVar prevPtr

(Node {val = val prevNode,
next = nextNode})

return True

Table 1. STM Linked List Straightforward Version

data List a = Node { val :: a
, next :: TVar (List a) }

| DelNode { next :: TVar (List a) }
| Null
| Head { next :: TVar (List a) }

find :: Eq a => ListHandle a -> a -> IO Bool
find lh x = searchAndExecute lh x $

_ _ -> return (return True)

delete :: Eq a => ListHandle a -> a -> IO Bool
delete lh x = searchAndExecute lh x $

\curPtr curNode -> do
writeTVar curPtr

(DelNode {next = next curNode})
return (return True))

searchAndExecute
:: Eq a
=> ListHandle a
-> a
-> (TVar (List a)

-> List a
-> STM (IO Bool))

-> IO Bool

searchAndExecute (ListHandle { headList = head }) x apply =
do startPtr <- atomically (readTVar head)

go startPtr
where
go prevPtr = loopSTM $ do

prevNode <- readTVar prevPtr
-- head/node/delnode all have next
let curPtr = next prevNode
curNode <- readTVar curPtr

case curNode of
Node {val = y, next = nextNode } ->

| x == y ->
-- node found and alive

apply curPtr curNode
| otherwise ->

-- continue
return (go curPtr)

Null -> -- reached end of list
return (return False)

DelNode { next = nextNode } ->
-- delete curNode by setting the next
-- of prevNode to next of curNode

case prevNode of
Node {} -> do

writeTVar prevPtr
(Node {val = val prevNode,

next = nextNode})
return (go prevPtr)

Head {} -> do
writeTVar prevPtr (Head {next = nextNode})
return (go prevPtr)

DelNode {} ->
-- if parent deleted simply move ahead
return (go curPtr)

loopSTM :: STM (IO a) -> IO a
loopSTM stm = do

action <- atomically stm
action

Table 2. Dissected STM Linked List Functions

data List a = Node { val :: a
, next :: MVar (List a) }

| Null
| Head { next :: MVar (List a) }

find :: Eq a => ListHandle a -> a -> IO Bool
find (ListHandle { headList = head }) x =

let go prevPtr prevNode =
do let curPtr = next prevNode -- head/node have all next

curNode <- takeMVar curPtr
case curNode of

Node {val = y, next = nextNode } ->
if (x == y)
then -- node found

do putMVar prevPtr prevNode
putMVar curPtr curNode
return True

else
do putMVar prevPtr prevNode

go curPtr curNode -- continue
Null -> do putMVar prevPtr prevNode

putMVar curPtr curNode
return False -- reached end of list

in do startPtr <- readIORef head
startNode <- takeMVar startPtr
go startPtr startNode

delete :: Eq a => ListHandle a -> a -> IO Bool
delete (ListHandle { headList = head }) x =

let go prevPtr prevNode =
do do let curPtr = next prevNode -- head/node have all next

curNode <- takeMVar curPtr
case curNode of

Node {val = y, next = nextNode } ->
if (x == y)
then -- delink node

do case prevNode of
Node {} -> do putMVar prevPtr (Node {val = val prevNode,

next = nextNode})
putMVar curPtr curNode
return True

Head {} -> do putMVar prevPtr (Head {next = nextNode})
putMVar curPtr curNode
return True

else do putMVar prevPtr prevNode
go curPtr curNode -- continue

Null -> do putMVar curPtr curNode
putMVar prevPtr prevNode
return False -- reached end of list

in do startPtr <- readIORef head
startNode <- takeMVar startPtr
go startPtr startNode

Table 3. Lock Coupling Based Linked List

data List a = Node { val :: a
, next :: IORef (List a) }

| DelNode { next :: IORef (List a) }
| Null
| Head { next :: IORef (List a) }

atomCAS :: Eq a => IORef a -> a -> a -> IO Bool
atomCAS ptr old new =

atomicModifyIORef ptr (\ cur -> if cur == old
then (new, True)
else (cur, False))

find :: Eq a => ListHandle a -> a -> IO Bool
find (ListHandle { headList = head }) x =

let go prevPtr = do
prevNode <- readIORef prevPtr
let curPtr = next prevNode -- head/node/delnode have all next
curNode <- readIORef curPtr
case curNode of

Node {val = y, next = nextNode } ->
if (x == y) then return True -- found
else go curPtr -- continue

Null -> return False
DelNode {next = nextNode } ->

case prevNode of
Node {} -> do b <- atomCAS prevPtr prevNode (Node {val = val prevNode,

next = nextNode})
if b then go prevPtr
else go curPtr

Head {} -> do b <- atomCAS prevPtr prevNode (Head {next = nextNode})
if b then go prevPtr
else go curPtr

DelNode {} -> go curPtr -- if parent deleted simply move ahead
in do startPtr <- readIORef head

go startPtr

delete :: Eq a => ListHandle a -> a -> IO Bool
delete (ListHandle { headList = head }) x =

let go prevPtr = do
prevNode <- readIORef prevPtr
let curPtr = next prevNode
curNode <- readIORef curPtr
case curNode of

Node {val = y, next = nextNode } ->
if (x == y) then

do b <- atomCAS curPtr curNode (DelNode {next = nextNode})
if b then return True
else go prevPtr -- spin

else go curPtr -- continue
Null -> return False
DelNode {next = nextNode } ->

case prevNode of
Node {} -> do b <- atomCAS prevPtr prevNode (Node {val = val prevNode,

next = nextNode})
if b then go prevPtr
else go curPtr

Head {} -> do b <- atomCAS prevPtr prevNode (Head {next = nextNode})
if b then go prevPtr
else go curPtr

DelNode {} -> go curPtr -- if parent deleted simply move ahead
in do startPtr <- readIORef head

go startPtr

Table 4. CAS Based Linked List

