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ABSTRACT
Haskell’s type classes allow ad-hoc overloading, or type-
indexing, of functions. A natural generalisation is to allow
type-indexing of data types as well. It turns out that this
idea directly supports a powerful form of abstraction called
associated types, which are available in C++ using traits
classes. Associated types are useful in many applications,
especially for self-optimising libraries that adapt their data
representations and algorithms in a type-directed manner.
In this paper, we introduce and motivate associated types

as a rather natural generalisation of Haskell’s existing type
classes. Formally, we present a type system that includes
a type-directed translation into an explicitly typed target
language akin to System F; the existence of this translation
ensures that the addition of associated data types to an
existing Haskell compiler only requires changes to the front
end.

Categories and Subject Descriptors: D.3.3 Program-
ming Languages: Language Constructs and Features

General Terms: Design, Languages, Theory

Keywords: Type classes; Type-indexed types; Associated
types; Type-directed translation; Self-optimising libraries

1. INTRODUCTION
In a recent OOPSLA paper, Garcia et al. compare the

support for generic programming offered by Haskell, ML,
C++, C#, and Java, using a graph-manipulation library as
a motivating example [11]. They offer a table of qualitative
conclusions, in which Haskell is rated favourably in all re-
spects except one: access to so-called associated types. For
example, we may want to represent arrays in a manner that
depends on its element type. So, given an element type e,
there is an associated type Array e of arrays of those ele-
ments.
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Extending the syntax of Haskell data declarations, we
might define Array as follows:

data Array Int = IntArray UIntArray
data Array Bool = BoolArray BitVector
data Array (a, b) = PairArray (Array a) (Array b)

Here, we represent an array of integers as an unboxed array,
an array of booleans as a bit vector, and an array of pairs as a
pair of arrays. (We assume that UIntArr and BitVector are
built-in types representing unboxed integer arrays and bit
vectors respectively.) These specialised representations are
more efficient, in terms of both space and runtime of typical
operations, than a type-invariant parametric representation.
Data types whose concrete representation depends on one or
more type parameters are called type analysing [15] or type
indexed [18].
In this paper, we shall demonstrate that type-indexed

types can be understood as class-local data type declara-
tions, and that in fact this is a natural extension of Haskell’s
type class overloading system. For example, the Array type
above would be expressed as a local data type in a type class
of array elements, ArrayElem :

class ArrayElem e where
data Array e
index :: Array e → Int → e

The keyword data in a class introduces an associated data
type definition—the type Array is associated with the class
ArrayElem . We can now define instances of the ArrayElem
class that give instantiations for the Array type, assuming
indexUIntArr is a pre-defined function indexing unboxed in-
teger arrays:

instance ArrayElem Int where
data Array Int = IntArray UIntArr
index (IntArray ar) i = indexUIntArr ar i

instance (ArrayElem a, ArrayElem b) ⇒
ArrayElem (a, b)where

data Array (a, b) = PairArray (Array a) (Array b)
index (PairArray ar br) i = (index ar i , index br i)

Together with the associated data type Array , we have
included a method index for indexing arrays. The full type
of index is

index :: ArrayElem e ⇒ Array e → Int → e

This signature makes both the function’s dependence on the
class ArrayElem as well as on the associated type Array ex-
plicit. In other words, for varying instantiations of the el-
ement type e, the concrete array representation on which
index operates varies in dependence on the equations defin-
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ing Array . This variation is more substantial than that of
standard Haskell type classes, as the representation type
of Array may change in a non-parametric way for different
instantiations of the element type e. In other words, type-
indexed types permit an ad hoc overloading of types in the
same way that standard type classes provide ad hoc overload-
ing of values.
To summarise, we make the following contributions:

• We introduce associated data type declarations as a
mechanism to implement type-indexed types, and de-
monstrate their usefulness with a number of motivat-
ing examples, notably self-optimising libraries (Sec-
tions 2 and 3).

• We show that associated data types are a natural ex-
tension of Haskell’s overloading system. We give typ-
ing rules for the the new type system, and the evidence
translation from source terms into a target language
akin to System F (Sections 3.3 and 4). As most of the
novel aspects of the system are confined to the Sys-
tem F translation, this enables a straightforward in-
tegration into existing Haskell compilers, such as the
Glasgow Haskell Compiler.

There is a great deal of related work on the subject of type-
indexed types, which we review in Section 6. Our approach
has a particularly close relationship to functional dependen-
cies [22], which we review in Section 5.

2. MOTIVATION
The previous array example is representative for a whole

class of applications of associated types, namely self-optimis-
ing libraries. These are libraries that, depending on their
use, optimise their implementation—i.e., data representa-
tion and choice of algorithms—along lines determined by
the library author. The optimisation process is guided by
type instantiation, as in the ArrayElem class where the el-
ement type determines a suitable array representation. We
shall discuss another instance of a representation optimisa-
tion by considering generic finite maps in Section 2.1. Then,
in Section 2.2, we turn to the more sophisticated example of
a generic graph library, where both data representation and
algorithms vary in dependence on type parameters. The key
feature of self-optimising libraries is that they do not merely
rely on general compiler optimisations, but instead the li-
brary code itself contains precise instructions on how the
library code is to be specialised for particular applications.
Since the introduction of templates, this style of libraries
has been highly successful in C++ with examples such as
the Standard Template Library [35], the Boost Graph Li-
brary [33], and the Matrix Template Library [34]. Work on
generic programming in Haskell, also illustrates the need for
type-dependent data representations [18, 17, 2].
In addition to implementing self-optimising libraries, asso-

ciated types are also useful for abstract interfaces and other
applications of functional dependencies. We shall discuss
abstract interfaces in Subsection 2.3.

2.1 Self-optimising finite maps
A nice example of a data structure whose representation

changes in dependence of a type parameter, which was first
discussed by Hinze [16] and subsequently used as an exam-
ple for type-indexed types by Hinze, Jeuring, and Löh [18]

in the context of Generic Haskell, are generalised tries or
generic finite maps. Such maps change their representation
in dependence on the structure of the key type k used to in-
dex the map. We express this idea by defining a type class
MapKey , parameterised by the key type, with an associated
type Map as one of its components:

class MapKey k where
data Map k v
empty :: Map k v
lookup :: k → Map k v → v

(We give only two class operations, empty and lookup, but
in reality there would be many.) In addition to the key type,
finite maps are parametrised by a value type that forms the
co-domain of the map. While the representation of generic
finite maps depends on the type k of keys, it is parametric in
the value type v . We express the different status of the key
type k and value type v by only making k a class param-
eter; although the associated representation type Map k v
depends on both types. Assuming a suitable library im-
plementing finite maps with integer trees, such as Patricia
trees [31], we may provide an instance ofMapKey for integer
keys as follows:

instance MapKey Int where
data Map Int v = MI (Patricia.Dict v)
empty = MI Patricia.emptyDict
lookup k (MI d) = Patricia.lookupDict k d

In this instance, the different treatment of the key and value
types is obvious in that we fix the key type for an instance,
while still leaving the value type open. In other words, we
can regardMap k as a type-indexed type constructor of kind
� → �.
As described in detail by Hinze [16], we can define generic

finite maps on arbitrary algebraic data types by simply giv-
ing instances for MapKey for unit, product, and sum types.
We do so as follows—for a detailed motivation of this defi-
nition, please see Hinze’s work:

instance MapKey ()where
data Map () v = MU (Maybe v)
empty = MU Nothing
lookup Unit (MU Nothing) = error “unknown key”
lookup Unit (MU (Just v)) = v

instance (MapKey a, MapKey b) ⇒
MapKey (a, b)where

data Map (a, b) v = MP (Map a (Map b v))
empty = MP empty
lookup (a, b) (MP fm) = lookup b (lookup a fm)

instance (MapKey a, MapKey b) ⇒
MapKey (Either a b)where

data Map (Either a b) v =
ME (Map a v) (Map b v)

empty = ME Nothing Nothing
lookup (Left a) (ME fm1 fm2) = lookup a fm1
lookup (Right b) (ME fm1 fm2) = lookup b fm2

To use the class MapKey on any specific algebraic data type,
we need to map it to its product/sum representation by
means of an embedding-projection pair [19, 18, 2].

2.2 Generic graphs
The concept of traits has been introduced to C++ with

the aim of reducing the number of parameters to templa-
tes [27]. Since then, generic programming based on tem-
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plates with traits has been found to be useful for self-opti-
mising libraries [33] where the choice of data representation
as well as algorithms is guided by way of type instantiation.
This has led to an investigation of the support for this

style of generic programming in a range of different lan-
guages by Garcia et al. [11]. The evaluation of Garcia et al.,
based on a comparative implementation of a graph library,
concluded that Haskell has excellent support for generic pro-
gramming with the exception of satisfactory support for as-
sociated types. The extension proposed in this paper tackles
this shortcoming head-on. Inspired by Garcia et al., we also
use a class of graphs as an example.

class Graph g where
data Edge g
data Vertex g
src :: Edge g → g → Vertex g
tgt :: Edge g → g → Vertex g
outEdges :: Vertex g → g → [Edge g ]

In contrast to the ArrayElem and MapKey examples, in
which the container type depended on the element type,
here the vertex and edge type depend on the container type.
This allows us to define several distinct instances of graphs
which all have the same edge and vertex types, but differ
in the representation and algorithms working on the data
structure. Here are two possible instances which both model
vertexes as integers, and edges as pairs of source and target
vertex, but still are represented differently:

-- adjacency matrix
newtype G1 = G1 [[Vertex G1]]
instance Graph G1 where

data Vertex G1 = GV1 Int
data Edge G1 = GE1 (Vertex G1) (Vertex G1)

-- maps vertexes to neighbours
newtype G2 = G2 (FiniteMap (Vertex G2) (Vertex G2))
instance Graph G2 where

data Vertex G2 = GV2 Int
data Edge G2 = GE2 (Vertex G2) (Vertex G2)

Apart from added flexibility, associated types lead to two
distinct advantages: first, as with traits, we reduce the num-
ber of parameters to the class; second, in contrast to class
parameters, we refer to the associated types by their names,
not just the position in the argument list, which further im-
proves readability and reduces the potential for confusing
the order of arguments.

2.3 Interface abstraction
All previous examples used associated types for self-op-

timising libraries specialising data representations and al-
gorithms in a type-directed manner. An entirely different
application is that of defining abstract interfaces, not unlike
abstract base classes in C++, interfaces in Java, or signa-
tures in Standard ML.
A well-known example of such an interface, motivated by

Haskell’s hierarchical standard library, is that of a monad
based on a state transformer that supports mutable refer-
ences. We can base this interface on a parametrised family
of types as follows:

class Monad m ⇒ RefM m where
data Ref m v
newRef :: v → m (Ref m v)
readRef :: Ref m v → m v
writeRef :: Ref m v → v → m ()

instance RefM IO where
data Ref IO v = RefIO (IORef v)
newRef = liftM RefIO ◦ newIORef
. . .

instance RefM (ST s)where
data Ref (ST s) v = RefST (STRef s v)
newRef = liftM RefST ◦ newSTRef
. . .

Note how here both the type parameter m of the associ-
ated type Ref as well the representation type Ref m are of
higher kind—that is, they are of kind � → �. The complete
signature of newRef is

newRef :: RefM m ⇒ v → m (Ref m v)

A subtlety of the above code is that the definition of Ref IO v
introduces a new type that by Haskell’s type equality is not
compatible with IORef v . However, sometimes we might
like to use an existing type as an associated type instead of
introducing a new type. This requires associated type syn-
onyms, which we plan to discuss in a future paper.

3. ASSOCIATED DATA TYPES IN DETAIL
In this section, we describe the proposed language exten-

sion in enough detail for a user of the language. Technical
details of the type system are deferred until Section 4.
We propose that a type class may define, in addition to

a set of methods, a set of associated data types. In the
class declaration, the data types are declared without any
definitions; the definitions will be given by the instance dec-
larations. The associated data type must be parameterised
over all the type variables of the class, and these type vari-
ables must come first, and be in the same order as the class
type variables. Rationale for this restriction is given in Sec-
tion 4.4.
Each associated data type introduces a new type construc-

tor. The kind of the type constructor is inferred in the obvi-
ous way; we also allow explicit kind signatures on the type
parameters:

class C a where
data T a (b :: ∗ → ∗)

Instance declarations must give a single definition for each
associated data type of the class; such a definition must
repeat the class parameters of the instance; any additional
parameters of the data type must be left as type variables.
The following is a legal instance of the C class above:

instance C a ⇒ C [a]where
data T [a] b = D [T a b] (b a)

An instance declaration with associated data types intro-
duces new data constructors with top-level scope. In the
above example, the data constructor D is introduced with
the following type:

D :: C a ⇒ [T a b] → (b a) → T [a] b

The instance of an associated data type may use a newtype
declaration instead of a data declaration if there is only
a single constructor with a single field. This enables the
compiler to represent the datatype without the intervening
constructor at runtime.

3.1 Types involving associated data types
The type constructor introduced by an associated data

type declaration can be thought of as a type-indexed type.
Its representation is dependent on the instantiation of its pa-
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rameters, and we use Haskell’s existing overloading machin-
ery to resolve these types. There is a close analogy between
methods of a class and associated data types: methods intro-
duce overloaded, or type-indexed, variables, while associated
data type declarations introduce type-indexed types.
Just as an expression that refers to overloaded identifiers

requires instances to be available or a context to be supplied,
the same is now true of types. Going back to the Array
example from the introduction, consider

f :: Array Bool → Bool

Our system declares this to be a valid type signature only if
there is an instance for ArrayElem Bool . Similarly,

f :: Array e → e

is invalid, because the representation for Array e is unknown.
To make the type valid, we have to supply a context:

f :: ArrayElem e ⇒ Array e → e

This validity check for programmer-supplied type annota-
tions is conveniently performed as part of the kind-checking
of these annotations. There is one further restriction on the
use of an associated type constructor: wherever the type
constructor appears, it must be applied to at least as many
type arguments as there are class parameters. This is not
so surprising when stated in a different way: a type-indexed
type must always be applied to all of its index parameters.

3.2 Associated types in data declarations
For consistency, the system must support using associated

types everywhere, including within the definition of another
data type. However, doing this has some interesting conse-
quences. Consider again the Array example, and suppose
we wish to define a new data type T :

data T e = C (Array e)

As just discussed, the type Array e is not a valid type for
all e, so we must add a context to the declaration of T :

data ArrayElem e ⇒ T e = C (Array e)

Haskell 98 already supports contexts on data declarations,
whose effect is to add a context to the type of the data
constructor, which makes it satisfy our validity principle:

C :: ArrayElem e ⇒ Array e → T e

Now, the type constructor T is no ordinary type construc-
tor: it behaves in a similar way to an associated type, in that
whenever T e appears in a type there must be an appropri-
ate context or instances in order to deduce ArrayElem e.
Furthermore, T must always be applied to all of its type-
indexed arguments. Just as a top-level function that calls
overloaded functions itself becomes overloaded, so a data
type that mentions type-indexed types itself becomes type
indexed. We call such type-indexed data types associated
top-level types.

3.3 Translation example
An important feature of our system is that we can explain

it by translation into an explicitly typed target language
akin to System F. To give the idea, we now walk through
the translation for theMapKey example in Section 2. Recall
the class declaration for the MapKey class:

class MapKey k where
data Map k v
empty :: Map k v
lookup :: k → Map k v → Maybe v

Its translation is a new data type, CMapKey , which is the
type of dictionaries of the MapKey class:

data CMapKey k mk
= CMapKey {

empty :: forall v . mk v ,
lookup :: forall v . k → mk v → Maybe v

}
The CMapKey type has a type parameter for each class
type variable as usual, in this case the single type variable
k . However, it now also has an extra type parameter mk
representing the associated type Map k . This is as each in-
stance of the class will give a different instantiation for the
type Map k , so the dictionary must abstract over this type.
Note that mk has kind � → �; the type variable v is still

unconstrained as it is not one of the class type variables. In-
deed, the class methods empty and lookup are now explicitly
parametric polymorphic in this type variable.
Our first instance is the instance for integer keys:

instance MapKey Int where
data Map Int v = MI (Patricia.Dict v)
empty = MI Patricia.emptyDict
lookup k (MI d) = Patricia.lookupDict k d

Its translation is a new datatype for the associated type and
a dictionary value:

data MapInt v = MI (Patricia.Dict v)

dMapInt :: CMapKey Int MapInt
dMapInt = CMapKey {

empty = MI Patricia.emptyDict ,
lookup k (MI d) = Patricia.lookupDict k d

}
Next we consider the instance for pairs:

instance (MapKey a, MapKey b) ⇒
MapKey (a, b)where

data Map (a, b) v = MP (Map a (Map b v))
empty = MP empty
lookup (a, b) (MP m) = lookup b (lookup a m)

Its translation is a new datatype and a dictionary function:

data MapPair ma mb v = MP (ma (mb v))

dMapPair :: forall a b. CMapKey a ma
→ CMapKey b mb
→ CMapKey (a, b) (MapPair ma mb)

dMapPair da db = CMapKey {
empty = MP (empty da),
lookup (a, b) (MP m) =
(lookup db) b ((lookup da) a m)

}
The new datatype MapPair takes two additional type ar-
guments, ma and mb, representing the types Map a and
Map b respectively. Because this instance has a context, the
translation is a dictionary function, taking dictionaries for
MapKey a and MapKey b as arguments before delivering a
dictionary value.
The translation for the Either instance doesn’t illustrate

anything new, so it is omitted. Instead, we give a translation
for an example function making use of the overloaded lookup
function:

f :: MapKey a ⇒ Map (a, Int) v → a → v
f m x = lookup (x , 42)m
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The translation looks like this:

f :: forall a v mk . CMapKey a mk
→ MapPair mk MapInt v → a → v

f da m x = lookup (dMapPair da dMapInt) (x , 42)m

Note that in translating the type Map (a, Int) v , the in-
stances for MapKey (a, b) and MapKey Int must be con-
sulted, just as they must be consulted to infer that MapKey
(a, Int) depends on MapKey a and to construct the dictio-
nary for MapKey (a, Int) in the value translation.

3.4 Default definitions
In Haskell, a class method can be given a default definition

in the declaration of the class, and any instance that omits
a specific definition for that method will inherit the default.
Unfortunately, we cannot provide a similar facility for as-
sociated data types. To see why, consider the ArrayElem
example from the introduction, and let’s add a hypothetical
default definition for the Array associated type:

class ArrayElem e where
data Array e = DefaultArray (BoxedArray e)
index :: Array e → Int → e

Now, what type should the DefaultArray constructor have?
Presumably, it should be given the type

DefaultArray :: ArrayElem e ⇒ BoxedArray e → Array e

But it cannot have this type. This constructor is not valid
for those instances of ArrayElem which give their own spe-
cific definitions of the Array type. There is no correct type
that we can give to a constructor of a default definition.

4. TYPE SYSTEM AND TRANSLATION
In this section, we formalise a type system for a lambda

calculus including type classes with associated data types.
We then extend the typing rules to include a translation
of source programs into an explicitly typed target language
akin to the predicative fragment of System F. The type sys-
tem is based on Jones’ Overloaded ML (OML) [20, 21]. In
fact, associated data types do not change the typing rules in
any fundamental way; however, they require a substantial
extension to the dictionary translation of type classes.

4.1 Syntax
The syntax of the source language is given in Figure 1. We

use overbar notation extensively. The notation αn means
the sequence α1 · · ·αn; the “n” may be omitted when it is
unimportant. Moreover, we use comma to mean sequence
extension as follows: an, an+1 � an+1. Although we give the
syntax of qualified and quantified types in a curried way, we
also sometimes use equivalent overbar notation, thus:

πn ⇒ τ ≡ π1 ⇒ · · · ⇒ πn ⇒ τ
τn → ξ ≡ τ1 → · · · → τn → ξ
∀αn.ρ ≡ ∀α1 · · · ∀αn.ρ

We accommodate function types τ1 → τ2 by regarding them
as the curried application of the function type constructor
to two arguments, thus (→) τ1 τ2.
The source language has three unusual features. First,

class declarations may contain data type signatures in ad-
dition to method signatures and correspondingly instance
declarations may contain data type declarations in addition
to method implementations. These data types are the as-
sociated types of the class, and are syntactically separated

Symbol Classes
α, β, γ → 〈type variable〉
T → 〈type constructor〉
D → 〈type class〉
S → 〈associated type〉
C → 〈data constructor〉
x, f, d → 〈term variable〉

Source declarations
pgm → data; cls; inst; val (whole program)
data → data T α = C τ (data type decl)

| data D α ⇒ S α β = C τ (assoc. type decl)
cls → class D α where (class decl)

dsig; vsig
inst → instance θ where (instance decl)

adata; val
val → x = e (value binding)

dsig → data S α β (assoc. type sig)
vsig → x :: σ (class method sig)

adata → data S τ β = C ξ (assoc. data type)

Source terms
e → v | e1 e2 | λx.e (term)

| let x = e1 in e2 | e :: σ
v → x | C (identifier)

Source types
τ, ξ → T | α | τ1 τ2 | η (monotypes)
ρ → τ | π ⇒ ρ (qualified type)
σ → ρ | ∀α.σ (type scheme)
η → S τ (associated-type app.)

Constraints
π → D α | D (α τ1 · · · τn) (simple constraint)
φ → D τ | π ⇒ φ (qualified constraint)
θ → φ | ∀α.θ (constraint scheme)

Environments
Γ → v :σ (type environment)
Θ → θ (instance environment)

Figure 1: Syntax of expressions and types

with type constructors ranged over by S rather than T . Sec-
ond, we syntactically distinguish two forms of top-level data
type declaration: ordinary ones T ; and top-level associated
types S, that mention associated types in their right-hand
side (see Section 3.2). In the declaration of associated types,
whether in a class declaration or a top-level data declara-
tion, the type indexes must come first. Third, the syntax of
types τ includes η, the saturated application of an associ-
ated type to all its type indexes. (There can be further type
arguments by way of the τ1 τ2 production.)
We make the following simplifying assumptions to reduce

the notational burden:

• Each class has exactly one type parameter, one method,
and one associated type.

• Each top-level associated type has exactly one type-
index parameter.

• Each data type has a single constructor. Furthermore,
rather than treat case expressions we assume that each
constructor C comes with a projection function prjCi
that selects the i’th argument of the constructor C.

• We do not treat superclasses.
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Target declarations
td → (x :υ) = w | data T α = C υ

Target terms
w → v | w1 w2 | λ(x :υ).w | Λα.w | w υ

| let x :υ = w1 in w2

Target types
υ → T | α | υ1 υ2 | ∀α.υ

Environments

∆ → d :θ (dictionary environment)
Ω → ω (associated-type environment)
ω → ∀α.(η ❀ T τ)

| η ❀ α

Figure 3: Syntax for target terms and types

Loosening these restrictions is largely a matter of adding
(a great many) overbars to the typing rules. Introducing
superclasses is slightly less trivial, as Section 4.5 discusses.

4.2 Type checking
A key feature of our system is that the typing rules for

expressions are very close to those of Haskell 98. We present
them in Figure 2. The judgement Θ | Γ � e : σ means that,
in type environment Γ and instance environment Θ, the ex-
pression e has type σ. All the rules are absolutely standard
for a Damas-Milner type system except (⇒I ) and (⇒E ).
The former allows us to abstract over a constraint, while
the latter allows us to discharge a constraint provided it is
entailed by the environment. The latter judgement, Θ � π
is also given in Figure 2, and is also entirely standard [21].
The auxiliary judgement Θ � σ, which is used in rules (→I )

and (∀E), is the kind-checking judgement, used when the
system “guesses” a type to ensure that the type is well-
kinded. In the interests of brevity, however, the rules of
Figure 2 elide all mention of kinds, leaving only the well-
formedness check that is distinctive to our system. Specifi-
cally, in a well-formed type, every associated type S τ must
be in a context that satisfies the classes D to which S is
associated—there can be more than one in the case of as-
sociated top-level data types. It is this side condition that
rejects (c.f., Section 3.1), for example, the typing

Θ | Γ � λx.x : ∀α.Array α → Int

This typing is invalid because the associated type Array α
is meaningless without a corresponding ArrayElem α con-
straint. This is as Array is simply not defined on all types of
kind �, but only on the subset for which there is a ArrayElem
instance. This is akin to a simple form of refinement kinds [9].
The rules for class and instance declarations are not quite

so standard, because of the possibility of one or more type
declarations in the class. We omit the details because they
form part of the more elaborate rules we give next. However,
the reason that the type well-formedness judgement Θ �
σ is specified to work for type schemes (rather than just
monotypes) is because it is needed to check the validity of
the types of class methods.

4.3 Evidence translation
A second crucial feature of our system is that, like Haskell

98 [10], it can be translated into System F (augmented with

data types) without adding any associated-type extensions
to the target language. We gave an example of this transla-
tion in Section 3.3. Now we formalise the translation.

4.3.1 Evidence translation for terms
The main judgement

Ω | ∆ | Γ � e ❀ w : σ

means that in environment Ω | ∆ | Γ the source term e
has type σ, and translates to the target term w (Figure 5).
The rules for this judgement are given in Figure 5; for the
most part they are a well-known elaboration of the rules in
Figure 2 [12].
The target term w is explicitly-typed in the style of Sys-

tem F, and its syntax is given in Figure 3. The main typing
judgement derives a source type σ, whereas the target term
is decorated with target types. The programmer only sees
source types σ, which include qualified types and applica-
tions of associated types. In contrast, a target type υ men-
tions only data types: no qualified types and no associated
types appear.
The instance environment Θ from the plain type-checking

rules has split into two components, Ω and ∆ (see Fig-
ure 3). The dictionary environment ∆ associates a dictio-
nary (or dictionary-producing function) d with each con-
straint scheme θ, but it otherwise contains the same infor-
mation as the old Θ. The well-formedness judgement Θ � σ
from Figure 2, used in rules (→I ) and (∀E), becomes a type-
translation judgement Ω � σ ❀ υ, that translates source
types to target types. This type translation is driven by the
associated-type environment Ω. We discuss type translation
further in Section 4.3.2.
Returning to the rules for terms, the interesting cases are

rules (⇒I ) and (⇒E ), which must deal with the associated
types. In rule (⇒I ), we abstract over the type variable that
stands for π’s associated type (i.e., only the one directly as-
sociated with the class mentioned in π; associated top-level
types need not be abstracted). Moreover, we need to extend
the dictionary environment ∆ to reflect the constraint that
is now satisfied by the environment including its witness d;
hence, we augment the type-translation environment Ω to
explain how π’s associated type (called η) may be rewritten.
Dually, rule (⇒E ) applies the target term w1 to the wit-

ness type υ as well as the witness term w2. The witness
types are derived by the judgement Ω � π ❀ υ, while the
witness terms are derived by Ω | ∆ � π ❀ w, both given in
Figure 4.

4.3.2 Translating types
The translation of source types to target types is for-

malised by the judgement Ω � σ ❀ υ of Figure 4, which
eliminates applications of associated types by consulting the
associated-type environment Ω. This judgement relates to
the well-formedness judgement Θ � σ of Figure 2 in just the
same way that the typing judgement Ω | ∆ | Γ � e ❀ w : σ
relates to Θ | Γ � e : σ.
To motivate the rules, here are some type translations

copied from Section 3.3:

Ω � Map Int ❀ MapInt
Ω � ∀αγ.(MapKey α)⇒ Map (α, Int) γ → α → γ

❀

∀αβγ.CMapKey α β → MapPair β MapInt γ → α
→ γ
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Θ � θ

θ ∈ Θ
Θ � θ

(mono)
Θ � ∀α.θ
Θ � [τ/α]θ

(spec)
Θ � π ⇒ φ Θ � π

Θ � φ
(mp)

Θ � σ

Θ �D τ S is an associated type of D

Θ 	 S τ

Θ 	 σ α 
∈ Fv(Θ)
Θ 	 ∀α.σ

Θ, π 	 ρ

Θ 	 π ⇒ ρ

Θ 	 τ1 Θ 	 τ2

Θ 	 τ1 τ2 Θ 	 α Θ 	 T

Θ | Γ � e : σ

(v : σ) ∈ Γ
Θ | Γ 	 v : σ

(var)
Θ | Γ 	 e1 : σ1 Θ | Γ[x : σ1] 	 e2 : σ2

Θ | Γ 	 let x = e1 in e2 : σ2
(let)

Θ | Γ[x :τ1] 	 e2 : τ2 Θ 	 τ1

Θ | Γ 	 λx.e2 : τ1 → τ2
(→I)

Θ | Γ 	 e1 : τ2 → τ1 Θ | Γ 	 e2 : τ2

Θ | Γ 	 e1 e2 : τ1
(→E)

Θ, π | Γ 	 e : ρ

Θ | Γ 	 e : π ⇒ ρ
(⇒I)

Θ | Γ 	 e : π ⇒ ρ Θ � π

Θ | Γ 	 e : ρ
(⇒E)

Θ | Γ 	 e : σ α 
∈ Fv(Θ) ∪ Fv(Γ)
Θ | Γ 	 e : ∀α.σ (∀I) Θ | Γ 	 e : ∀α.σ Θ 	 τ

Θ | Γ 	 e : [τ/α]σ
(∀E) Θ | Γ 	 e : σ

Θ | Γ 	 (e :: σ) : σ (sig)

Figure 2: Standard type checking rules for expressions

Ω � σ ❀ υ

(∀α.(η ❀ T τ)) ∈ Ω Ω 	 [τ ′/α]τ ❀ υ

Ω 	 [τ ′/α]η ❀ T υ
(trΩ1)

(η ❀ α) ∈ Ω
Ω 	 η ❀ α

(trΩ2)
Ω 	 α ❀ α Ω 	 T ❀ T

Ω 	 τ1 ❀ υ1 Ω 	 τ2 ❀ υ2

Ω 	 τ1 τ2 ❀ υ1 υ2
(tr→)

Ω 	 σ ❀ υ α 
∈ Fv(Ω)
Ω 	 ∀α.σ ❀ ∀α.υ

Ω 	 π ❀ (η ❀ α), υd Ω[η ❀ α] 	 ρ ❀ υ

Ω 	 π ⇒ ρ ❀ ∀α.υd → υ
(trπ)

Ω � π ❀ υ
S = the associated type of D Ω 	 S τ ❀ υ

Ω 	 D τ ❀ υ
(πE)

Ω � π ❀ (η ❀ α), υ
S = the associated type of D α fresh Ω 	 τ ❀ υ

Ω 	 D τ ❀ (S τ ❀ α), (D υ α)
(πI )

Ω | ∆ � θ ❀ w

(d : θ) ∈ ∆
Ω | ∆ � θ ❀ d

(mono)
Ω | ∆ � ∀α.θ ❀ w Ω 	 τ ❀ υ

Ω | ∆ � [τ/α]θ ❀ w υ
(spec)

Ω | ∆ � π ⇒ φ ❀ w1 Ω | ∆ � π ❀ w2 Ω 	 π ❀ υ

Ω | ∆ � φ ❀ w1 υ w2
(mp)

Figure 4: Translating types

The first example is straightforward, because it arises di-
rectly from the instance declaration forMapKey Int . There
is more going on in the second example. The class constraint
is translated to an ordinary function, with argument type
CMapKey α β, where the data type CMapKey is the type of
dictionaries for class MapKey , and is generated by translat-
ing the class declaration. The crucial point is that this data
type takes an extra type parameter β for each associated
type of the class, here just one. Correspondingly, we must

quantify over the new type β as well. The typeMap (α, Int)
is first translated to MapPair (Map α) (Map Int), by apply-
ing the translation scheme added to Ω when translating the
instance declaration for pairs. Then, (Map Int) is translated
toMapInt as before, while Map α is precisely the associated
type for the class MapKey α, and so is translated to β.
The associated-type environment therefore contains two

kinds of assumptions, ω (Figure 3). First, from an instance
declaration we get an assumption of the form ∀α.S ξ ❀ T τ ,
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Ω | ∆ | Γ � e ❀ w : σ

(v : σ) ∈ Γ
Ω | ∆ | Γ 	 v ❀ v : σ

(var)
Ω | ∆ | Γ 	 e1 ❀ w1 : σ1 Ω | ∆ | Γ[x : σ1] 	 e2 ❀ w2 : σ2 Ω 	 σ1 ❀ υ

Ω | ∆ | Γ 	 (let x = e1 in e2) ❀ (let x :υ = w1 in w2) : σ2
(let)

Ω | ∆ | Γ[x :τ1] 	 e ❀ w : τ2 Ω 	 τ1 ❀ υ1

Ω | ∆ | Γ 	 (λx.e) ❀ (λx :υ1.w) : τ1 → τ2
(→I)

Ω | ∆ | Γ 	 e1 ❀ w1 : τ2 → τ1 Ω | ∆ | Γ 	 e2 ❀ w2 : τ2

Ω | ∆ | Γ 	 (e1 e2) ❀ (w1 w2) : τ1
(→E)

Ω 	 π ❀ (η ❀ α), υ Ω[η ❀ α] | ∆[d :π] | Γ 	 e ❀ w : ρ

Ω | ∆ | Γ 	 e ❀ (Λα.λ(d :υ).w) : π ⇒ ρ
(⇒I)

Ω | ∆ | Γ 	 e ❀ w1 : π ⇒ ρ Ω | ∆ � π ❀ w2 Ω 	 π ❀ υ

Ω | ∆ | Γ 	 e ❀ w1 υ w2 : ρ
(⇒E)

Ω | ∆ | Γ 	 e ❀ w : σ α 
∈ Fv(∆) ∪ Fv(Γ)
Ω | ∆ | Γ 	 e ❀ (Λα.w) : ∀α.σ (∀I) Ω | ∆ | Γ 	 e ❀ w : ∀α.σ Ω 	 τ ❀ υ

Ω | ∆ | Γ 	 e ❀ w υ : [τ/α]σ
(∀E) Ω | ∆ | Γ 	 e ❀ w : σ

Ω | ∆ | Γ 	 (e :: σ) ❀ w : σ
(sig)

Figure 5: Typing rules with translation

where S is an associated data type and T is the correspond-
ing target data type. For example, consider the instances
of class MapKey in Section 3.3. The instances for Int and
pairs augment Ω with the assumptions:

Map Int ❀ MapInt
∀ α1α2.Map (α1, α2) ❀ MapPair (Map α1) (Map α2)

We will see the details of how Ω is extended in this way
when we discuss the rule for instance declarations in the
next section. Second, when in the midst of translating a
type, we extend Ω with local assumptions of form S τ ❀ β—
which is denoted as η ❀ β in rule (trπ) of Figure 4 and also
(⇒I ) of Figure 5. For example, when moving inside the
“MapKey α ⇒” qualifier in the example above, we add the
assumption Map α ❀ β to Ω.
Whenever we need to extend Ω with local assumptions

of form S τ ❀ α, we use a judgement of the form Ω �
π ❀ (η ❀ α), υ (from Figure 4). Such a judgement ab-
stracts over the associated type of π by introducing a new
type variable α that represents the associated type. It also
provides the application of the associated type at the class
instance π, as η, and the corresponding dictionary type, as
υ.

4.3.3 Data type and value declarations
The rules for type-directed translation of declarations are

given in Figure 6. They are somewhat complex, but that
is largely because of the notational overheads, and much of
the complexity is also present in vanilla Haskell 98. There is
real work to be done, however, and that is the whole point.
The programmer sees Haskell’s type system more or less
unchanged, but the implementation has to do a good deal
of paddling under the water to implement the associated
types.
The translation of vanilla data type declarations is easy:

all we need to do is translate the constructor argument
types, using our auxiliary type-translation judgement Ω �
τ ❀ υ. The handling of associated top-level data types is
more involved, but their treatment closely mirrors that of
associated types in instance declarations, which we discuss
below. Value declarations are also straightforward, because
all of the work is done in Figures 4 and 5.

4.3.4 Class declarations
The interesting cases are class and instance declarations.

It may help to refer back to the example of Section 3.3 when

reading these rules. As noted there, a class declaration for
class D is translated to a data type declaration, also named
D, whose data constructor is called CD. This data type will
be used to represent the dictionary for class D, so the con-
structor has the class method’s signature σ as its argument
type, suitably translated of course. The translation uses an
associated-type environment Ω′ that maps each associated
type to a fresh type variable β. The data type must be
parameterised over these fresh β, because they will presum-
ably be free in the translated method types υ. Finally, we
must generate a binding for the method selector function
for the class method f ; in the rule, this is implemented by
the corresponding projection functions prjCD . In addition
to the target declarations defining the data type for the dic-
tionary and the method selector functions, the Rule (cls)
produces an environment Γ giving the source types of the
class methods.
We impose the same restriction on method types that

Haskell 98 does, namely that constraints in the method type
σ must not constrain the class parameter α. Lifting this re-
striction would permit classes like this one:

class D a where
op :: C a ⇒ a → T a

where the constraint C a constrains only the class variable
a. In the functional-dependency setting, classes like these
are known to be tricky, and the situation is the same for us.
In this paper we simply exclude the possibility.

4.3.5 Instance declarations
Instance declarations are more involved. For each associ-

ated type S of the class, we must generate a fresh data type
declaration T that implements the associated type at the
instance type. This data type must be parameterised over
(a) the quantified type variables of the instance declaration
itself, α, (b) a type variable for each associated type of each
constraint in the instance declaration, β, and (c) the type
variables in which the associated type is parametric in all
instances, γ. Here is an artificial example to demonstrate
the possibilities:

class MK k where
data M k v

instance (MK a, MK b) ⇒ MK (a, b)where
data M (a, b) v = MP v a (M b) b

The data type that arises from the instance declaration is
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Ω � data ❀ td : Ω, Γ

Ω 	 τ ❀ υc

Ω 	 data T α = C τc ❀ data T α = C υc : [], [C : ∀α.τc → T α, prjC : ∀α.T α → τ
c
]
(data)

Ω 	 π ❀ (η ❀ β), υd
r

Ω′ = Ω[η ❀ β
r
] Ω′ 	 τc ❀ υc

c

Ω 	 data πr ⇒ S γ α = C τc
c ❀ data T γ β

r
α = C υd

r υc
c :

[∀γ. (S γ ❀ T γ ηr)],
[C : ∀γα.πr ⇒ τc

c → S γ α,

prjC : ∀γα.πr ⇒ S γ α → τc
c
]

(adata)

Ω � cls ❀ td : Γ

β fresh Ω′ = Ω[S α ❀ β] Ω′ 	 σ ❀ υ σ = ∀δ.π ⇒ τ where α 
∈ Fv(π)

Ω 	
class D α where

data S α γ
f :: σ

❀
data D α β = CD υ
(f : ∀αβ.D α β → υ) = prjCD

: [f : ∀α.D α ⇒ σ]

(cls)

Ω | ∆ | Γ � inst ❀ td : Ω, ∆, Γ

Ω 	 π ❀ (η ❀ β), υd
r

Ω′ = Ω[η ❀ β
r
] ∆′ = ∆[d : π

r
] Ω′ 	 τc

c ❀ υc
c

(f : ∀δ.D δ ⇒ σ) ∈ Γ Ω′ | ∆′ | Γ 	 e ❀ w : [τ/δ]σ

d
r
fresh df fresh T fresh

Ω | ∆ | Γ 	
instance ∀αs.πr ⇒ D τ where

data S τ γ = C τc
c

f = e
❀

data T αs β
r
γ = C υd

r υc
c

df = ΛαsΛβ.λd :υd
r
.CD w

:

[∀αs. (S τ ❀ T αs ηr)],
[df :∀αs. πr ⇒ D τ ]),
[C : ∀αsγ. πr ⇒ τc

c → S τ γ,

prjC : ∀αsγ.πr ⇒ S τ γ → τc
c
]

(inst)

Ω | ∆ | Γ � val ❀ td : Γ

Ω | ∆ | Γ 	 e ❀ w : σ Ω 	 σ ❀ υ

Ω | ∆ | Γ 	 (x = e) ❀ (x :υ = w) : [x : σ]
(val)

� pgm ❀ td

Ω = Ωd,Ωi Γ = Γd,Γc,Γi,Γv

Ω 	 data ❀ dd : Ωd,Γd Ω 	 cls ❀ dc : Γc Ω | ∆ | Γ 	 inst ❀ di : Ωi,∆,Γi Ω | ∆ | Γ 	 val ❀ dv : Γv

	 data; cls; inst; val ❀ dd; dc; di; dv

Figure 6: Declaration typing rules with translation

the following:

data M ′ a b ma mb v = MP v a mb b

The arguments ma and mb were the β in (b) above. They
may not all be needed, as we see in this example. As an
optimisation, if any are unused in the (translated) right
hand side of the declaration, they can be omitted from the
type-parameter list. To produce the right-hand sides υc

from the τc of an instance’s associated type declarations,
we need to replace applications of other associated types by
the newly introduced type parameters. This is achieved by
the associated-type environment Ω′ in the hypothesis.
In addition to promoting the associated data type S to

become a fresh top-level data type declaration T , rule (inst)
also returns in its conclusion (a) a tiny associated-type envi-
ronment and dictionary environment that embody the infor-

mation about the instance declaration for use in the rest of
the program, and (b) a tiny type environment that embodies
the types of the new data constructor, C.
That concludes the hard part of instance declarations.

The generation of the dictionary function, df , and the ex-
tension of the dictionary environment ∆, is exactly as in
vanilla Haskell.

4.3.6 Tying the knot
The final judgement in Figure 6 glues together the judge-

ments for types, classes, instances, and value declarations.
This rule is highly recursive: the associated-type environ-
ment Ω that is produced by type checking instance declara-
tions, is consumed by that same judgement and the other
three judgements too. Similarly, all four judgements pro-
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duce a fragment of the environment Γ, which is consumed by
the judgements for instance and value declarations. There
is a good reason for this recursion. For example, consider
the data type G1 from Section 2.2. Its constructor mentions
the type Vertex G1, and the translation for that type comes
from the instance declaration!
In practice, the implementation must unravel the recur-

sion somewhat, and our new extension makes this slightly
harder than before. For example, in Haskell 98 one can
type-check the instance declaration heads (the part before
the where), to generate the top level ∆, then check the
value declarations to generate Γ, and then take a second run
at the instance declarations, this time checking the method
bodies. But now the instance declarations for one class may
be needed to type-check the class declaration for another
class, if the associated types for the former appear in the
method type signatures for the latter. None of this is rocket
science, but it is an unwelcome complication.

4.4 Associated type parameters
In Section 3, we specified that the type parameters of the

associated type should be identical to those of its parent
class, plus some optional extra parameters γ. Now we can
see why. The class parameters must occur first so that we
can insist that associated-type applications are saturated
(w.r.t. the class parameters). That in turn ensures that
the type translation described by Ω can proceed without
concern for partial applications and without clutter arising
from the extra γ.
We could in principle permit an associated type to per-

mute its parent class parameters (where there is more than
one), at the cost of extra notational bureaucracy in the (inst)
rule, but there seems to be no benefit in doing to. We could
also in principle allow an associated type to mention only a
subset of its parent class parameters; but then we would need
to make extra tests to ensure that the instance declarations
did not overlap taking into account only the selected class
parameters, to ensure that the type translation described
by Ω is confluent. (A similar test must be made when func-
tional dependencies are employed.) Again, the benefit does
not seem to justify the cost.

4.5 Superclasses
Our formalisation of the type system and evidence trans-

lation does not take superclasses into account; i.e., there
is no context in the head of a class declaration. We made
this simplification in the interest of the clarity of the for-
mal rules. Nevertheless, there is a subtlety with respect
to the translation of associated types of classes with super-
classes. In rule (cls) of Figure 6, we see that the gener-
ated dictionary data type D has a type argument β, which
corresponds to the associated type of the class (in general,
there can be multiple associated types, and hence, multiple
such type arguments). If the class D has superclasses which
themselves contain associated types, each of these associated
types needs to appear as an argument to the dictionary D,
too. In other words, similar to how the dictionaries of su-
perclasses must be embedded in a class’s own dictionary, the
associated types of superclasses need to also be embedded.

4.6 Soundness
As the evidence translation maps programs from a typed

source into a typed intermediate language, we expect it to

generate only well typed programs. That this expectation is
met is asserted by the formal results sketched in the follow-
ing (full details are in a companion technical report). Type
checking of target declarations td and target terms w is de-
noted by �F td and Γ �F w : υ, respectively, where Γ is
a target type environment and υ a target type. The type
checking rules are standard for a type passing lambda cal-
culus and omitted for space reasons. Moreover, we lift the
type translation judgement Ω � σ ❀ υ pointwise to trans-
late source to target environments.

Theorem 1. Given a type translation environment Ω, dic-
tionary environment ∆, and type environment Γ, if a source
term e of type σ translates as Ω | ∆ | Γ � e ❀ w : σ, its type
as Ω � σ ❀ υ, and the environment as Ω � Γ❀ ΓF , then
we have ΓF �F w : υ.

Proof. The proof proceeds by rule induction over the
target term producing translation rules. The tricky cases
are those for rules (⇒I ) and (⇒E ), where we abstract over
types associated with the class of a context and supply cor-
responding representation types, respectively. Moreover, we
need to make use of some auxiliary properties of the judg-
ments of Figure 4.

Theorem 2. Given a source program pgm, if we can trans-
late it as � pgm ❀ td , the resulting target program is well
typed; i.e., �F td.

Proof. The proof considers the target declaration pro-
ducing rules from Figure 6 in turn and demonstrates that
the type environment produced for the source program cor-
responds to that produced for the target program by the
type translation judgement Ω � σ ❀ υ.

Theorem 2 is not sufficient to ensure soundness, but it
provides a strong indication that our translation is sound.

5. COMPARISON TO FUNCTIONAL DEPEN-
DENCIES

Functional dependencies [22] are an experimental addi-
tion to multi-parameter type classes that introduce a func-
tional relationship between different parameters of a type
class, which is similar to that between class parameters
and associated types. Indeed, the extra type parameters
introduced implicitly by our System-F translation appear
explicitly when the program is expressed using functional
dependencies. For example, using FDs one might express
the Array example like this:

class ArrayRep e arr | e → arr where
index :: arr → Int → e

The functional dependency e → arr restricts the binary re-
lation ArrayRep to a function from element types e to rep-
resentation types arr . The instance declarations populate
the relation represented by ArrayRep. In other words, the
associated type is provided as an extra argument to the class
instead of being local. Consequently, the corresponding in-
stance declarations are as before, but with the local type
definition replaced by instantiation of the second parameter
to the class ArrayElem (with methods omitted):

instance ArrayRep Int UIntArr
instance (ArrayRep a arr , ArrayRep b brr) ⇒

ArrayRep (a, b) (arr , brr)
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This use of functional dependencies to describe type-indexed
data types suffers from three serious shortcomings, which we
shall discuss next. On the other hand, functional dependen-
cies can be used in situations where associated data types
cannot. However, it appears as if in conjunction with associ-
ated type synonyms they might cover all major applications
of functional dependencies. Future work will show whether
this is indeed the case.

Undecidable type constraints. As Duck et al. [8]
point out, the instance for pairs ArrayRep (a, b) (arr , brr)
is problematic, as the type variables arr and brr do not oc-
cur in the first argument (a, b) to the type constraint. If
such instances are accepted, type inference in the presence
of functional dependencies becomes undecidable. More pre-
cisely, it diverges for certain terms that should be rejected as
being type incorrect. Jones’ [22] original proposal of func-
tional dependencies does not allow such instances.

Clutter. In the comparative study of Garcia et al. [11],
mentioned in Section 2.2, Haskell receives full marks in all
categories except the treatment of associated types in type
classes with functional dependencies. In essence, the re-
quirement to make all associated types into extra param-
eters of type classes results in more complicated and less
readable code. This is illustrated by the parameter arr in
the type class ArrayRep. These extra parameters appear
in all signatures involving associates types and can be quite
large terms in more involved examples, such as the graph
library discussed by Garcia et al.

Lack of abstraction. We would expect that we can de-
fine type-indexed arrays in a module of their own and hide
the concrete array representation from the user of such a
module. However, an encoding based on functional depen-
dencies does not allow for this level of abstraction. To see
why this is the case, consider the full type of the index func-
tion, namely,

index :: ArrayRep e arr ⇒ arr → Int → e

Avoiding the use of any knowledge of how arrays of integers
are represented, we would expect to be able to define

indexInt :: ArrayRep Int arr ⇒ arr → Int → Int
indexInt = index

However, such a definition is not admissible, as the type
signature is not considered to be an instance of the type in-
ferred for the function body in the presence of the functional
dependency e → arr (cf. the class declaration of ArrayRep).
In fact, we are forced to use the following definition instead:

indexInt ′ :: UArrInt → Int → Int
indexInt ′ = index

This clearly breaks the intended abstraction barrier! In fact,
it suggests that functional dependencies threaten the usual
type substitution property. The root of the problem lies
deep. A consequence of the evidence translation for type
classes is that we would expect there to be a System F term
that coerces the translation of indexInt into the translation
of indexInt ′. However, no such coercion exists, as it would
require a non-parametric operation, which is not present in
System F [13].

Variations on functional dependencies. Duck et al. [8]
propose a more liberal form of functional dependencies in
which recursive instances, such as that of ArrayRep, do not
lead to non-termination. However, they also require a radi-
cally different form of type checker based on the HM(X) [30]

framework with constraint handling rules. Stuckey & Sulz-
mann [36] introduce an implementation of multi-parameter
type class with functional dependencies that does not de-
pend on a dictionary translation. As a result, they can avoid
some of the problems of the original form of functional de-
pendencies.
Neubauer et al. [28] introduce a functional notation for

type classes with a single functional dependency that is
very much like that of parametric type classes [3]. How-
ever, their proposal is just syntactic sugar for functional
dependencies, as they translate the new form of classes into
multi-parameter classes with a functional dependency be-
fore passing them on to the type checker. The same authors
are more ambitious in a second proposal [29], where they
add a full-blown functional logic language to the type sys-
tem, based on the HM(X) [30] framework. Neubauer et al.
do not address the issue of a suitable evidence translation,
which means that they can infer types, but not compile their
programs.

6. RELATED WORK
Type classes. There is a significant amount of previous
work that studies the relationship between type classes and
type-indexed functions [37, 19, 1, 23, 24], mostly with the
purpose of expressing generic functions using standard type
classes alone.
Chen et al. [3] proposed parametric type classes—i.e., type

classes with type parameters—to represent container classes
with overloaded constructors and selectors. They provide
a type system and type inference algorithm, but do not
present an evidence translation. Parametric type classes are
not unlike a type class with a single associated type syn-
onym.
Generic Haskell. Hinze et al. [16, 18] propose a trans-
lation of type-indexed data types based on a type speciali-
sation procedure. Their efforts have culminated in Generic
Haskell, a pre-processor that translates code including type-
indexed types and functions into Haskell including type sys-
tem extensions such as rank-n types. They pay special atten-
tion to type-indexed data types that are structurally defined,
such as the Map type from Section 2.1, and automatically
perform the mapping from standard Haskell data type defi-
nitions to a representation based on binary sums and prod-
ucts. In recent work, Löh et al. [26] elaborated on the origi-
nal design and introducedDependency-style Generic Haskell.
In fact, our translation of associated types to additional type
parameters is akin to the translation of type-indexed types
in Generic Haskell. Associated types are a more lightweight
extension to Haskell, but they miss the automatic generation
of embedding projection pairs.
ML modules. It has been repeatedly observed that there
is a significant overlap in functionality between Haskell type
classes and Standard ML modules. The introduction of as-
sociated types has increased this overlap; ML modules have
always been an agglomeration of both values and types.
Nevertheless, there are interesting differences between type
classes and ML modules. In particular, ML structures are a
term-level entity and hence a notion of phase distinction [14]
is required to separate static from dynamic semantics, with
Leroy [25] proposing a variant. In contrast, type classes are
a purely static concept. In part, due to the involvement
of the term level, ML’s higher-order modules give rise to a
very rich design space [7] and it is far from clear how the
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different concepts relate to type classes. Despite these dif-
ferences, the introduction of associated types shows that the
commonality between type classes and ML modules may be
more significant than previously assumed. Hence, it would
be worthwhile to investigate this relationship in more detail.
Intensional type analysis. Intensional type analysis [15]
realises type-indexed types by a type-level Typerec construct
and has been proposed to facilitate the type-preserving op-
timisation of polymorphism. Subsequent work [32, 6, 5, 38]
elaborated on Harper and Morrisett’s seminal work that al-
ready outlined the relationship to type classes. A concep-
tual difference between intensional type analysis and type
classes is that the former is based on an explicit runtime
representation of types, whereas the target language of our
evidence translation has a standard type-erasure semantics.
Nevertheless, Crary et al. [6] proposed an alternative view
on intensional type analysis based on type erasure and we
need to pass method dictionaries at runtime, which can be
regarded as an implicit type representation.
Constrained data types. Xi et al. [39] introduce type-
indexed data types by annotating each constructor of a data
type declarations with a type pattern, which they call a
guard, present a type system, and establish its soundness. In
their internal language type-indexing is explicit, which is in
contrast to our approach, where all type-indexing is removed
during the evidence translation (a phase that they call elab-
oration). Cheney & Hinze’s [4] present a slightly generalised
version of guarded data types by permitting equational type
constraints at the various alternatives in a data type decla-
ration. Both of these approaches differ from our class-based
approach in that our type-indexed data types are open—a
new class instance can always be added—whereas theirs is
closed, as data type declarations cannot be extended.
Refinement kinds. In Section 4.2, we said that we under-
stand a type constraint of the form D α as a restriction of the
range of the variable α; i.e., α only ranges over a subset of
the types characterised by kind �. In particular, it restricts
α such that the term S α is well-defined on α’s entire range
if S is an associated type of D . This subkinding relationship
is related to Duggan’s notion of refinement kinds [9]. How-
ever, Duggan only considers type-indexed functions, but not
type-indexed types.
Object-oriented languages. As we mentioned in Sec-
tion 2.2, associated types have a long standing tradition in
C++ and are often collected in traits classes [27]. Garcia
et al. [11] compared the support for generic programming
in C++, Standard ML, Haskell, Eiffel, Generic Java, and
Generic C#. There exists a plethora of work on generic pro-
gramming in object-oriented programming languages, but it
is beyond the scope of this paper to review all of it.

7. CONCLUSIONS
We propose to include type declarations alongside value

declarations in Haskell type classes. Such associated types
of a type class are especially useful for implementing self-
optimising libraries, but also serve to implement abstract
interfaces and other concepts for which functional dependen-
cies have been used in the past. For the case of associated
data types, we demonstrated that dictionary-based evidence
translation, which is standard for implementing type classes
can be elegantly extended to handle associated types. In
particular, the target language is not affected by the exten-
sion of the source language.

In future work, we hope to extend the mechanism from
associated data types to associated type synonyms, a general-
isation that has substantial implications due to introducing
additional, non-syntactic equalities on the type level. We
plan to investigate the feasibility of generic default meth-
ods [19] for classes involving associated types.

Acknowledgements. We thank Amr Sabry for discus-
sions on a previous version of this approach and for pointing
us to the work of Garcia et al. We thank Roman Leshchin-
skiy for his detailed feedback on our work and for sharing his
insights into generic programming in C++. We particularly
thank Martin Sulzmann for his detailed and constructive
comments on earlier drafts of the paper. We also thank
Dave Abrahams, Brian McNamara, and Jeremy Siek for an
interesting email exchange comparing Haskell type classes
with C++ classes. We thank Robert Harper, Greg Mor-
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