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Abstract
Monads have taken the world by storm, and are supported by do-
notation (at least in Haskell). Programmers are increasingly waking
up to the usefulness and ubiquity of Applicatives, but they have
so far been hampered by the absence of supporting notation. In
this paper we show how to re-use the very same do-notation to
work for Applicatives as well, providing efficiency benefits for
some types that are both Monad and Applicative, and syntactic
convenience for those that are merely Applicative. The result is
fully implemented as an optional extension in GHC, and is in use
at Facebook to make it easy to write highly-parallel queries in a
distributed system.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Applicative (functional) programming; D.3.3 [Language
Constructs and Features]: Control structures

Keywords Haskell; monad; applicative; syntax

1. Introduction
Consider this Haskell function that calculates the number of com-
mon friends between two Facebook users:

numCommonFriends :: Id → Id → Haxl Int
numCommonFriends x y = do

fx ← friendsOf x
fy ← friendsOf y
return (length (intersect fx fy))

Here friendsOf is an operation that makes a remote query to
a database to fetch the list of friends of a user. Desugaring the
monadic do expression according to the Haskell standard [13]
yields this:

numCommonFriends x y =
friendsOf x >>= λfx →
friendsOf y >>= λfy →
return (length (intersect fx fy))

where >>= and return are operations from the Monad class. This
translation works fine, but it is inherently sequential: the second
call to friendsOf cannot start until the first returns, because the
result of the first call, namely fx, is in scope at the second call so
in principle might be used by it. But, tantalisingly, fx manifestly
isn’t used by the second call, so we actually could run the two in
parallel.

Marlow et. al. [14] showed how to exploit this parallelism by
using McBride and Paterson’s insight that between a Functor and
a Monad lies an Applicative [16]. To be concrete, we can rewrite
numCommonFriends using Applicative combinators like this:

numCommonFriends :: Id → Id → Haxl Int
numCommonFriends x y =
(λfx fy → length (intersect fx fy))

<$> friendsOf x
<*> friendsOf y

The combinators <$> and <*> are defined in Figure 1, but for now
we simply note that the two calls to friendsOf are now manifestly
independent of one another. And indeed the implementation of the
Haxl monad1 can take advantage of that independence to perform
the two friendsOf queries in parallel; in fact it collects them
together and batches them into a single query.

But there is still a problem; programmers should not have to spot
where they can use <*> to gain its advantages, because they are
likely to miss some opportunities, especially when code is refac-
tored. Moreover there are maintainability and comprehensibility
benefits in using a single universal notation, namely do notation.
In this paper we show how to have our cake and eat it too: the
programmer writes do notation, and the compiler desugars it au-
tomatically into the efficient parallel code that uses Applicative
combinators. We make these contributions:

• Rather than desugaring do notation uniformly into Monad com-
binators, we show how to take advantage of the program’s de-
pendency structure to selectively use Applicative combina-
tors instead (Section 2.1). For some types that are both Monad
and Applicative, this provides efficiency benefits at runtime
without losing any maintainability or clarity in the source code.
For types that are Applicative but not Monad, we gain access
to the do notation, providing a syntactic convenience.

• The more we can use Applicative combinators, the better.
But as we show in Section 2.4, there may be more than one way
to desugar a do-expression into Applicative combinators,
none of which is universally best. We propose a definition of
optimality by fixing a set of assumptions.

• We present a detailed translation of Haskell’s do-notation into
Applicative operations (Section 3) using our definition of
optimality (Section 4). This translation proceeds by way of an
independently-interesting elaboration of the do-notation.

• We present an implementation of the described translation in
the Glasgow Haskell Compiler (Section 5), and measure its ef-
fectiveness on existing widely-used open-source Haskell code,
and a large codebase at scale.

• The Haxl monad is not the only abstraction where using
Applicative combinators leads to more efficient code than
the equivalent expression written using Monad combinators.
We give some more examples in Section 6.

1 https://github.com/facebook/haxl

https://github.com/facebook/haxl


class Functor f where

fmap :: (a → b) → f a → f b

class Functor f => Applicative f where

pure :: a → f a
(<*>) :: f (a → b) → f a → f b

class Applicative f => Monad f where

return :: a → f a
(>>=) :: f a → (a → f b) → f b

<$> :: Functor f => (a → b) → f a → f b
<$> = fmap

ap :: (Monad m) => m (a → b) → m a → m b
ap mf mx = mf >>= λf → mx >>= λx → return (f x)

join :: (Monad m) => m (m a) → m a
join x = x >>= id

Laws used in this paper

f <$> m = pure f <*> m
<*> = ap
pure = return

pure r >>= f = f r
m >>= (λx → k x >>= h) = (m >>= k) >>= h

Figure 1. Definitions of Functor, Applicative, Monad, <$>, ap,
and join

2. The Main Idea
In 1992 Wadler suggested using monads as a programming abstrac-
tion [22], conveniently embodied as a type class Monad in Haskell.
Monads took the world by storm, and have appeared in many other
languages.

Sixteen years later, McBride and Paterson discovered another
key abstraction, which they called applicative functors [16], em-
bodied by the Applicative type class. The Applicative class
sits between Functor and Monad in the class hierarchy; every
Monad is an Applicative and every Applicative is a Functor,
but the reverse of these is not necessarily true. Figure 1 gives the
definitions of these classes for easy reference.

This paper is based on two observations. Firstly, it would be
convenient to be able to write Applicative expressions using do

notation. For example, given an effectful map written using do

notation like this:

mapM [] = pure []
mapM (x:xs) = do x’ ← f x

xs’ ← mapM f xs
pure (x’ : xs’)

we would like GHC to infer this type and desugaring for it:

mapM :: Applicative m => (a → m b) → [a] → m [b]
mapM [] = pure []
mapM (x:xs) = (:) <$> f x <*> mapM f xs

Notice that, despite the use of do-notation, the inferred type in-
dicates that mapM works for any Applicative, not just for any
Monad, and so will work for a significantly wider range of types.

The second, and more important, observation is that in some
Monads the Applicative <*> operation is more efficient than

the equivalent Monad ap operation. Exploiting this performance
difference currently requires the programmer to spot where they
can use <*> and refactor their code to use it, but, like other compiler
optimisations, we would prefer the compiler to automatically take
advantage of <*> whenever it can. The approach we take is to have
the compiler desugar do notation into uses of the Applicative
operations where possible, falling back to Monad when necessary.

This second observation is the strongest motivator for this work:
the Haxl monad (called Fetch in previous work [14]) provides par-
allelism between data-fetching operations when the <*> operator is
used. But programmers should not have to think about where to use
<*>. Indeed, we would prefer not to use <*> explicitly in our code
at all, because it is sensitive to refactoring: introducing or removing
dependencies between expressions affects where we can use <*>,
and if the programmer is responsible for using <*> then not only
do they have to spend time thinking about it, but they are likely to
do an imperfect job. Thus we would like programmers to be able to
use a simple universal syntax, so that they can focus on correctness
while letting the compiler exploit parallelism as far as possible. The
translation we present in this paper achieves this: Haxl program-
mers use do notation, and the compiler automatically extracts the
available parallelism. This translation is used in a system at Face-
book, and results in significant performance gains (Section 5.5).

2.1 The Challenge
The challenge is this: given an arbitrary expression in do-notation,
we would like to translate it into an expression that, wherever
possible, uses operations from the Applicative class rather than
the Monad class.

For reference, the definitions2 of the Functor, Monad, and
Applicative type classes as provided in GHC 8.0.13 are given in
Figure 1, along with the auxiliary functions <$> (an infix spelling
of fmap), and ap. The Figure also gives the laws that are expected
to hold for instances of Monad and Applicative. For example, in
many monads <*> is defined to be ap; but even where it has a more
efficient implementation the second law says that its semantics
should be the same as ap. Nothing enforces these laws, but our
alternative desugaring is only semantics-preserving if these laws
hold for the relevant instances of Functor, Applicative, and
Monad.

Before we give the translation scheme in full in Section 3, we
will motivate our design through a series of examples. First, a
straightforward example involving two independent statements:

do x1 ← A
x2 ← B
return (x1,x2)

where A and B are arbitrary expressions, and B does not mention x1.
The normal desugaring of this expression, according to the Haskell
2010 Report, would yield this expression:

A >>= λx1 →
B >>= λx2 →
return (x1,x2)

Using <$> and <*> instead gives us:

(,) <$> A <*> B

This is semantically equivalent, as you can check for yourself using
the laws given in Figure 1, plus the definition of ap.

2 For simplicity we have omitted default definitions, and the operators $>,
>>, *>, and <*.
3 After extensive user debate, GHC has diverged from the Haskell 2010
specification by adding the new class Applicative as a superclass of
Monad.



Next, let us modify the original expression so that the expression
B mentions the variable x1:

do x1 ← A
x2 ← B[x1] -- An expression B mentioning x1
return (x1,x2)

There is no way to desugar this expression into a use of the <*>
operator as before, because there is now a dependency between B
and A. We can see that from the types of <*> and >>=:

(<*>) :: Applicative f => f (a → b) → f a → f b
(>>=) :: Monad f => f a → (a → f b) → f b

The type of >>= allows the second computation (f b) to depend on
the result a of the first, whereas <*> does not. This is the essence
of the difference between Monad and Applicative; Monad allows
dependencies on previous results, whereas Applicative does not.
So we must desugar the example to

A >>= λx1 → B[x1] >>= λx2 → return (x1,x2)

In short: whenever there is a dependency between two statements in
a do-notation expression, our translation must use >>= somewhere.

2.2 Mixing it Up
However, it’s not an either/or choice: we may be able to desugar in
a way that uses <*> in some places and >>= in others. For example:

do x1 ← A
x2 ← B
x3 ← C[x1]
x4 ← D[x2]
return (x3,x4)

Here we have two pairs of statements, A and B, and C and D. The
statements in each pair are independent, but C and D depend on the
results of A and B respectively. So we can do A and B applicatively in
parallel, gather the results with >>=, and then do C and D in parallel.
Here’s a picture to show what we mean:

A

!!
C

!!
(,)

==

!!

(,) // result

B

==

D

==

and we use the informal notation (A|B); (C|D) to describe this struc-
ture. We can rewrite the expression using applicative combinators,
following this structure, as follows:

((,) <$> A <*> B)
>>=

λ(x1,x2) → (,) <$> C[x1] <*> D[x2]

The first line does A and B in parallel, building a result pair
(x1,x2); then comes a monadic bind; then we match the pair
and do C and D in parallel. The important point is that we use the
applicative <*> where possible, and the monadic >>= where neces-
sary.

2.3 Accounting for Effects
Looking again at the example in the previous section, there is an
alternative execution plan that would respect the data dependencies:

A // C
!!
(,) // result

B // D

==

or, in our informal notation (A; C) | (B; D). After all, the data depen-
dencies only require that C occurs after A, and D after B. Moreover,
this appears to be a better plan than the one in Section 2.2, because
it removes an apparently-unnecessary synchronisation point. To see
why it is better, suppose A and D take two seconds each and B and C
both take one second. Then the above plan takes three seconds, but
the one in Section 2.2 takes four.

Alas we cannot use this more efficient execution plan, though,
because it amounts to swapping the order of B and C. The corre-
sponding applicative expression is this:

(,) <$> (A >>= λx1 → C[x1])
<*> (B >>= λx2 → D[x2])

but this is not semantically equivalent to the original do-notation
expression. Imagine executing it under a State monad, for exam-
ple: the effects would appear in the order A, C, B, D, and the program
may give different results.

Reordering the statements is only valid in a commutative
monad, where the order of effects is not observable. The Haxl
monad is not commutative, because it supports effects in the form
of exceptions, so reordering statements can change which excep-
tions are reported. In our design, we therefore never reorder com-
putations. We leave for future work the possibility of allowing
reordering for commutative monads.

Even though our transformation does no automatic re-ordering,
the programmer is free to do so manually, by writing:

do x1 ← A
x3 ← C[x1]
x2 ← B
x4 ← D[x2]
return (x3,x4)

Now our transformation will be able to produce the more efficient
result.

2.4 There Is No Single Best Translation
Consider this example:

do x ← A
y ← B
z ← C[x]
return (y+z)

There are two ways that we might consider implementing this, in
our informal notation:

1. (A | B); C

2. A; (B | C)

Which one is better? Alas, it depends on the relative execution
times of A, B, and C. Imagine a parallel execution model where
we can determine the overall execution time (which we will call
“cost”) by interpreting “|” as maximum and “;” as addition. so the
cost of (1) is max(A, B) + C, and the cost of (2) is A + max(B, C).
Now let’s assign some example costs to A, B, C:

• A = 1, B = 1, C = 1: both alternatives have equal cost, 2.
• A = 0, B = 1, C = 1: (1) has cost 2, (2) has cost 1.
• A = 1, B = 1, C = 0: (1) has cost 1, (2) has cost 2.

It is easy to see that which translation is better depends on the
relative cost of the terms.

We cannot have complete knowledge of the costs of the state-
ments in a do, therefore it is not possible to find an optimal transla-
tion in general. Our scheme uses a conservative definition of “opti-
mal” wherein each statement is assumed to have equal cost.



Expressions
e ∈ Expr ::= v Variable

| e1 e2
| λp→ e
| (e1, . . . , en) n >= 2
| do l e
| . . .

Patterns
p ∈ Pat ::= v

| (p1, . . . , pn) n >= 2
| . . .

Statement sequences
l ∈ Stmts ::= {s1; . . . ; sn} n >= 1

Statements
s ∈ Stmt ::= (l1 | ... | ln) n >= 2

| p ← e
| e
| let bind in e

Figure 2. Syntax

desugarstd (do {e}) = e
desugarstd (do {p ← e; s}) = e >>= λp→ desugarstd (do {s})

Figure 3. Haskell 2010 desugaring of do-notation

2.5 Optimising the Translation
In Section 2.2 we built a pair of results from A and B, used >>=, and
pattern-matched the resulting pair. Here is an alternative and neater
translation using the join combinator (see Figure 1):

join ((λx1 x2 → (,) <$> C[x1] <*> D[x2])
<$> A
<*> B)

By using join we avoid the intermediate pair (x1,x2). One
should think of join as a more flexible >>=, and in fact in our
translation we shall be using join instead of >>= in this way.

3. The New Desugaring Algorithm
In this section we formalise our new desugaring algorithm for do
notation. It proceeds in two stages:

• Rearrangement (Section 3.2). The first stage corresponds to
our informal execution plan. It takes a sequence of statements
s1, . . . , sn and groups them into parallel blocks (Section 3.1),
thus building a tree. Rearrangement does not re-order the state-
ments, merely groups them; flattening the tree returns the orig-
inal statement sequence.

• Desugaring (Section 3.3). The second stage turns this tree of
statements into an expression using <*>, <$>, >>=, and join.

Before presenting rearrangement and desugaring in detail, we first
present an extended syntax for do-notation in Section 3.1. This
syntax serves as a bridge between the two stages of the algorithm,
capable of expressing the choices made by rearrangement without
the noise introduced by desugaring.

For comparison, the standard Haskell 2010 desugaring for do
expressions is given in Figure 3 (using the Haskell Report’s abstract
syntax which does not distinguish the final return, unlike ours).
For simplicity we ignore refutable patterns for now, but we return
to them in Section 3.7.

3.1 Parallel Blocks
In Section 2 we used an informal notation (A | B); C to describe
our desired execution plan, and used that plan to desugar the do

expression. In this section we formalise that notation as a simple
and independently-useful extension of do-syntax.

Figure 2 gives the new (abstract) syntax. Note that:

• For expressions and patterns we omit everything except the
forms we use in our translation; hence the “. . .”.

• In our abstract syntax, an expression do l e represents a do

expression with statements l that ends in return e or pure e.
If the original source do expression does not end in return e or
pure e then we can transform it so that it does, by introducing
a dummy variable. For example, do { x ← A; B } would be
represented as do{x ← A; y ← B} y in our abstract syntax, where
y is a fresh variable.

• A statement s is either a single statement (bind, expression, or
let), or it is a parallel block (l1 | . . . | ln), where each li is again
a sequence of statements.

These parallel blocks are not written by the programmer; rather,
they are introduced by our rearrangement algorithm. Their meaning
is simple: a block (l1 | . . . | ln) means the same as the statement
sequence l1 ++ . . . ++ ln, where ++ appends two sequences of
statements. Thus, for example, these two mean the same thing:

do (a ← A | b ← B) do a ← A
c ← C b ← B
(d ← D | e ← E) c ← C

d ← D
e ← E

In short, flattening all parallel blocks does not change the meaning
of the program.

As the syntax suggests, though, a parallel block requires that no
result computed by li is required by any of the other blocks lj . This
is enforced by a simple scoping limitation: the variables bound in
li are not in scope in lj when i 6= j. In the above example, a is not
in scope in B, nor vice versa. Similarly, a, b, and c are all in scope
in D but e is not.

The independence of the li in a parallel block means that the
desugaring algorithm is free to combine them with Applicative
combinators. To be concrete, the parallel block (l1 | . . . | ln) is
equivalent to the statement

(p1, . . . , pn) ← (, . . . , ) <$> do l1 p1
<*> . . .
<*> do ln pn

where pi = tuple bv(li) and bv(li) are the variables bound by
li. By <*> = ap, this interpretation is equivalent to flattening the
parallel block into a sequence.

3.2 Rearrangement
The algorithm for rearrangement is given in Figure 4. The function
rearrange applies to the sequence of statements l in a do expression
which contains no parallel forms, and it returns a new sequence
in which the parallel form is used “as much as possible” (we will
formalise this in Section 4). Let us consider this example:

do x1 ← A
x2 ← B[x1]
x3 ← C
return (x2,x3)

Rearrangement ignores the final expression, return (x2,x3) in
this case, and considers only the list of statements. The first step is



rearrange {s1; . . . ; sn} = {s1}, ifn = 1
= split g1, if k = 1
= {(split g1 | . . . | split gk)}, otherwise

where
g1 . . . gk = segments {s1; . . . ; sn}

segments {s1; . . . ; sn} = {s1; . . . ; si1} . . . {s(ik)+1; . . . ; sn}
where
i1 . . . ik = { i ∈ 1 . . . n

| bv{s1; . . . ; si} ∩ fv{si+1; . . . ; sn} = ∅ }

split{s1; . . . ; sn} = {s1}, ifn = 1
= splitat iopt, otherwise

where
splitat i = rearrange {s1; . . . ; si}++ rearrange {si+1; . . . ; sn}
iopt ∈ 1 . . . n such that
∀j . 1 ≤ j < n. costs (splitat j) ≥ costs (splitat iopt)

costs {s1; . . . ; sn} = Σ{costasi | 1 ≤ i ≤ n}

costa (p ← e) = 1
costa (l1 | . . . | ln) = max{costs li | 1 ≤ i ≤ n}

fv {s1; . . . ; sn} = the free variables of s1 . . . sn
bv {s1; . . . ; sn} = the variables bound by s1 . . . sn

Figure 4. Rearrangement: introduce parallel statements

to split the list into segments, as defined by the segments func-
tion in Figure 4. We define segments according to where their
boundaries are: there is a segment boundary after statement i in
the sequence whenever none of the variables defined by statements
s1 . . . si are used in the following statements, si+1 . . . sn. Intu-
itively, we are looking for the places in the sequence that have no
dependencies crossing them, which are exactly the places we can
split the sequence to use the applicative <*> operator.

The dependencies of our example expression look like this:

A B
vv

C

A segment boundary is a place in the sequence that has no arrows
crossing it. In our case there is only one such place: between the
statements B and C. From the definition of rearrange this gives

(split {x1 ← A; x2 ← B[x1]} | split {x3 ← C})

Next, split deals with a single segment. By the definition of
segments we cannot split this segment into independent sub-
segments, so we have no alternative but to divide it into two sub-
sequences and combine them with “;”. The question is, at which
point should we divide the sequence? There is no way to tell locally
which is the best spot to split it, so we exhaustively test the possibil-
ities and pick the best (or one of the best, since there might be more
than one). Alternatives are evaluated using a simple cost function,
which assumes a parallel execution model in which each statement
has unit cost. Note that there is a more efficient implementation of
this algorithm that we discuss in Section 4.3.

In our example, there is only one choice for the split boundary
in the left segment, and the right segment has a single statement so
is returned by split unchanged. Both recursive calls to rearrange
are on single statements, which return the statement unchanged,
leaving the final result:

({x1 ← A; x2 ← B[x1]} | {x3 ← C})

desugar :: Stmts → Expr → Expr

desugar {} e = pure e (0)

desugar {p ← e} e′ (1)
| p == e′ = e
| otherwise = (λp → e′) <$> e

desugar {p ← e; l} e′ = e >>= λp → desugar l e′ (2)

desugar {(l1 | . . . | ln)} e
= (λp1 . . . pn→ e) <$> e1 <*> . . . <*> en
where (pi, ei) = desugararg li fv(e)

(3)

desugar {(l1 | . . . | ln); s} e
= join ((λp1 . . . pn→ e

′) <$> e1 <*> . . . <*> en)
where

e′ = desugar s e
(pi, ei) = desugararg li fv(e′)

(4)

desugararg :: Stmts → Set Var → (Pat ,Expr)
desugararg {p ← e} vs = (p, e)
desugararg l vs = ((v1, .., vk), desugar l (v1, ..., vk))

where
v1 . . . vk = bv(l) ∩ vs

Figure 5. Desugaring

In Section 3.4 we will consider a more complex example where
the search for an optimal split point in split comes into play.

3.3 Desugaring
The next stage is desugaring, where we turn our tree of state-
ments into a concrete expression, using the operators from the
Applicative and Monad classes.

Figure 5 gives the desugaring for a rearranged do expression.
For an expression do l e, the call (desugar l e), produces an
equivalent expression that does not use do at the outer level. In
the call (desugar l e) we will call e the continuation; it is the
expression that forms the return value after l has performed its
effects and bound any variables mentioned in e.

There are five cases in desugar:

(0) handles an empty list of statements;

(1) translates a singleton bind, using <$>;

(2) handles the general case for bind, using >>=;

(3) translates a singleton parallel block, by building an applicative
expression;

(4) handles the general case of an applicative block that is not the
last statement. In this case we build an applicative expression
with join.

The two cases that explicitly match on a singleton statement,
(1) and (3), are required for building expressions that require only
Functor or Applicative respectively. Without these two rules,
desugar would still produce a valid result, but it would require a
Monad constraint in some cases where one is unnecessary.

Our running example will help to illustrate the process of desug-
aring. Applying desugar to the expression after rearrangement:

desugar{{x1 ← A; x2 ← B[x1]} | {x3 ← C}} (x2, x3)

requires rule (3), yielding the applicative expression



(λx2 x3 → (x2,x3))
<$> desugar {x1 ← A; x2 ← B[x1]} x2
<*> desugar {x3 ← C} x3

Each element of the parallel composition li becomes an argument
of the applicative expression. For each li, the function desugararg
returns a pair of (a) the pattern to use in the lambda, and (b) the
expression to use in the argument position. For the pattern, we form
a tuple of the variables that are both defined by li and used in the
continuation. In our example, the first argument defines both x1 and
x2, but of these only x2 is used in the continuation (x2,x3), so
the pattern becomes x2 (a tuple of one term is the term itself). The
second argument defines only x3, so that becomes the pattern. The
function on the left of <$> is a lambda expression with patterns for
each of the arguments (here x2 and x3), and the body of the lambda
is the continuation.

In the arguments of the applicative expression we now have
recursive calls to desugar, so let’s consider the first of those:

desugar {x1 ← A; x2 ← B[x1]} x2

This requires case (2), yielding

A >>= λx1 → desugar {x2 ← B[x1]} x2

Next, the inner desugar call hits rule (1), specifically the first case
since x2 = x2, yielding just B[x1]. This special case of rule (1)
avoids leaving an unnecessary call to <$> in the output, which
might be difficult to optimise away later.

The other recursive desugar call reduces in a similar way, lead-
ing to this overall result:

(λx2 x3 → (x2,x3))
<$> (A >>= λx1 → B[x1])
<*> C

which is exactly what we wanted.

3.4 A Larger Example
Here is a more complicated example:

do x1 ← A
x2 ← B[x1]
x3 ← C
x4 ← D[x3]
x5 ← E[x1,x4]
return (x2,x4,x5)

The statements have this dependency structure:

A Bhh C Dhh Ett hh

As before, we apply segments first. This time there are no
segment boundaries, because the dependency from E to A spans the
whole sequence. Thus we have a single segment, and we proceed
to split.

In split, we must try all possibilities for a split and determine
their costs. The four possibilities are enumerated below. For con-
ciseness in the following discussion we will refer to the statements
by their right hand sides (A, B, etc.):

1. Split after A, giving A; rearrange{B; C; D; E}. There are seg-
ments B and {C; D; E}, giving the final result A; (B | {C; D; E})
(cost 4).

2. Split after B, giving rearrange{A; B}; rearrange{C; D; E}, which
reduces to A; B; C; D; E (cost 5).

3. Split after C, giving rearrange{A; B; C}; rearrange{D; E}. There
is a segment boundary on the left after B, and we end up with
({A; B}|C); D; E (cost 4).

4. Split after D, giving rearrange{A; B; C; D}; E. There is a segment
boundary after B, and the final result is ({A; B} | {C; D}); E (cost
3).

The rearrangement with the minimum cost was to split between
D and E, which allowed us to put the two subsequences A;B and
C;D in parallel with each other.

The full result of rearrangement is

({x1 ← A; x2 ← B[x1]} | {x3 ← C; x4 ← D[x3]});
{x5 ← E[x1,x4] }

Applying desugar results in:

join (λ(x1,x2) x4 →
E[x1,x4] >>= λx5 → pure (x2,x4,x5))

<$> (A >>= λx1 → B[x1] >>= λx2 → return (x1,x2))
<$> (C >>= λx3 → D[x3])

Note that we determined that only x4 needed to be returned from
the sequence {x3 ← C; x4 ← D[x3]}, because desugararg takes the
intersection of the variables defined by the sequence (x3 and x4 in
this case) with the variables used in the continuation (x2, x4, and
x5), which here is the singleton set containing x4.

3.5 do Expressions that Require Functor Only
A pleasant consequence of rule (1) in Figure 5 is that a simple do

expression such as

do x ← ask
return (filter (==x) list)

desugars to

(λx → filter (==x) list) <$> ask

This is a degenerate case of constructing an applicative expression,
where we have only a single argument. With two or more indepen-
dent statements the expression would use <*> and hence require
an Applicative constraint, but here since we only use <$> the
expression requires only Functor.

Interestingly, this translation may be more efficient than the
standard Haskell desugaring, because <$> often has a more direct
implementation than the combination of >>= and return. For
example, consider the Functor and Monad definitions for lists:

instance Functor [] where

fmap = map

instance Monad [] where

return x = [x]
xs >>= f = [y | x ← xs, y ← f x]

So m >>= return . f involves creating an intermediate single-
ton list [x] which is immediately deconstructed by >>=, whereas
fmap f m does not have this intermediate singleton.

Note that by virtue of rules (1) and (3), every do-notation ex-
pression that ends with return or pure will be translated using
<$>, effectively doing a little optimisation during desugaring, and
leaving the optimiser with a little less work to do later.

3.6 return and pure

Our algorithm treats pure and return identically when they ap-
pear as the last statement of a do (see Section 3.1), and generates
code that uses only pure. The latter is necessary so that we can
generate code that requires only Applicative rather than Monad.



This might be surprising, because do { return E } turns into
pure E. However, return is arguably a historical legacy, born
before the discovery of applicative functors, and nowadays we
should really be using pure. Indeed, there are those who argue
that return should be removed from the Monad class and given
the static definition return = pure.

A shortcoming of our design is that the check for return
or pure is purely syntactic, and is easily defeated. For example,
even return $ x or let p = pure in p x are not recognised.
It seems hard to avoid this difficulty, given the constraints of fitting
into an existing language design.

3.7 Refutable Patterns
A refutable pattern is one which may fail to match at runtime.
Variables and patterns that match a single-constructor datatype
(such as tuples) are irrefutable, because they cannot fail to match;
patterns that refer to one constructor of a sum type (such as x:xs)
are refutable.

The desugaring translation in Figure 5 needs an extra rule to
handle refutable patterns:

desugar(do {p ← e; l} e′)
| refutable p =
let ok p = desugar l e′

ok _ = fail "..."
in

e >>= ok

(0.5) Handle refutable patterns

This rule takes precedence over Rules (1) and (2) when the pattern p
is refutable. In particular this means that we cannot use <$> when
the pattern is refutable, so a refutable pattern will entail a Monad
constraint. Furthermore, future changes to Haskell are expected
to remove fail from the Monad class into a separate MonadFail
class, so this rule will result in a MonadFail constraint.

There is one more modification we need. The first clause of
desugararg only applies when p is irrefutable:

desugararg {p ← e} vs | not(refutable p) = (p, e)

and we fall back to the second clause, which will use Rule (0.5)
above.

3.8 Extension to Other Statement Forms
Haskell’s do notation has two additional statement forms that we
have not dealt with yet: let statements and expression statements
(Figure 2).

The let form is dealt with straightforwardly. First, the cost
function treats a let as having zero cost:

costa (let decls) = 0

A let should have zero cost because it can only do pure compu-
tation, and the goal of our translation is to achieve the maximal
parallelisation of effects. Second, we must add a case to desugar:

desugar {let decls; l} e =
let decls in desugar l e′

(5) Handle let

In our implementation we add one small refinement. We observe
that there is no benefit in having let bindings placed in parallel
with other statements, so in the result of segments if we have any
segments that consist only of let bindings, we concatenate those
bindings onto an adjacent segment. This results in slightly shorter
desugared code with no loss in parallelism.

The expression form can be dealt with in two ways. The easiest
way is to translate it into a bind statement with a wildcard pattern:
_ ← e. That works, and yields the optimal parallelism, but it may be
possible to achieve better efficiency in some cases (see Section 8).

3.9 Pitfalls
We encountered two related pitfalls when applying this translation
to real code. In Haskell today it is possible to define fmap using do

syntax, like this:

instance Functor T where

fmap f m = do x ← m; return (f x)

If we apply our applicative desugaring this becomes

instance Functor T where

fmap f m = f <$> m

and since <$> = fmap, the definition is now a loop. The fix is to
define fmap without using do, as fmap f m = m >>= return . f.

A similar problem arises with Applicative instances:

instance Applicative T where

mf <*> mx = do f ← mf; x ← mx; return (f x)

which turns into a self-recursive definition of <*>. The solution is
to use <*> = ap (and ensure that the definition of ap itself does
not fall into this trap!).

3.10 Expressing Applicatives Directly
Since the rearrangement algorithm of Section 3.2 is somewhat
complex, one might worry that a minor change to the program
might cause a different rearrangement, which in turn had very
different behaviour (e.g. parallelism). In this respect applicative
do-notation behaves like other compiler optimisations—moving
the responsibility for optimisation from the programmer to the
compiler is always a double-edged sword.

The usual solution is to allow the programmer to take control
when they need to. Here, this means writing applicative code di-
rectly, which is certainly possible. However, an attractive alterna-
tive is to do manual rather than automatic rearrangement, by allow-
ing the the programmer to write the rearranged program directly
in the notation of Figure 2. That way, she can express the paral-
lel structure in a high-level way, while the desugaring algorithm of
Section 3.3 takes care of the tiresome plumbing. The syntactic ex-
tension is modest: just the parallel form of Stmt in Figure 2. We
have not yet tried this out in practice.

4. Optimality of Split
The optimality of our algorithm is relative to the cost function,
which assumes a parallel execution model in which every statement
has identical cost. Statements combined with “|” are assumed to
run in parallel and thus we take the maximum of their costs, while
statements combined with “;” run serially and so we add their
costs. This corresponds closely to the execution model of the Haxl
monad, and it is sufficient to give good results for other monads
because it favours <*> over >>=. As we saw earlier (Section 2.1),
we can sometimes do better if we have more knowledge about
the exact cost of statements, but in general that knowledge is not
available.

4.1 Optimality of Outer Parallelism
Our rearrangement algorithm exploits outer parallelism first, using
the function segments in Figure 4. It is not immediately clear that
this gives optimal results, so in this Section we formalise that claim.

Consider a sequence of n statements s1 . . . sn. Let Cij stand
for the optimal cost of rearrangement of a subsequence si . . . sj .
We make no assumption about the relative costs of individual
statements, hence we let Cii = 1. Furthermore, Cij ≥ 1 for all
non-empty subsequences 1 ≤ i ≤ j ≤ n.



LEMMA 4.1 (Monotonicity). Expanding a subsequence by one
statement to the left or to the right cannot reduce the optimal cost,
and can increase it by at most 1:

Cij ≤ C(i−1)j ≤ Cij + 1

Cij ≤ Ci(j+1) ≤ Cij + 1

Proof. The upper bound is achieved by sequentially composing
the new statement with the original subsequence: si−1 ; (si . . . sj)
or (si . . . sj) ; sj+1. The lower bound can be proved by induction
on the length of subsequences. The base case 1 ≤ Ci(i+1) trivially
follows fromCij ≥ 1 (the case where we expand to the left follows
by symmetry). For the inductive step we examine two cases:

1. The optimum in Ci(j+1) is achieved by sequential composition
(si . . . sk); (sk+1 . . . sj+1) for some i ≤ k ≤ j. Then,

Ci(j+1) = Cik +C(k+1)(j+1) ≥(∗) Cik +C(k+1)j ≥(∗∗) Cij ,

where (*) follows from C(k+1)j ≤ C(k+1)(j+1) (the inductive
hypothesis), and (**) is due to the optimality of Cij .

2. The optimum in Ci(j+1) is achieved by parallel composition
(si . . . sk) | (sk+1 . . . sj+1) for some i ≤ k ≤ j. Then,

Ci(j+1) = max(Cik, C(k+1)(j+1)) ≥ max(Cik, C(k+1)j) ≥ Cij ,

where the inequalities hold for the same reasons as in case 1. �

THEOREM 4.2 (Parallelism is optimal). If a subsequence si . . . sj
can be split into two segments si . . . sk and sk+1 . . . sj with no
dependencies between them then Cij = max(Cik, C(k+1)j), and
the optimum is achieved by combining the segments using parallel
composition (si . . . sk) | (sk+1 . . . sj).

Proof. Thanks to the Monotonicity Lemma 4.1 one can see that
Cij ≥ Cik and Cij ≥ C(k+1)j , which can be combined into the
following lower bound: Cij ≥ max(Cik, C(k+1)j). The parallel
composition achieves the lower bound and is therefore optimal. �

4.2 Optimal Sequential Split
When a subsequence si . . . sj has no outer parallelism, we have to
use a sequential split (si . . . sk) ; (sk+1 . . . sj) instead. One can
find the optimum k in linear time by examining all j − i splits:

Cij = min
i≤k<j

{Cik + C(k+1)j}.

Since there are at most O(n2) different subsequences si . . . sj , the
overall worst case complexity of the algorithm is O(n3). Fortu-
nately, it is often possible to avoid iterating through all values of k,
hence significantly improving the average case complexity.

Consider two splits si; (si+1 . . . sj) and (si . . . sj−1); sj . Their
costs are L = C(i+1)j + 1 and R = Ci(j−1) + 1, respectively.

THEOREM 4.3 (Sequential split). IfL 6= R thenCij = min(L,R)
and the optimum is achieved by the split with the lower cost.

Proof. From the Monotonicity Lemma 4.1 we have:

L− 1 ≤ Cij ≤ L ∧ R− 1 ≤ Cij ≤ R
By combining the lower bounds we get Cij ≥ max(L,R)−1. We
also know that min(L,R)+1 ≤ max(L,R) since L 6= R. Hence:

Cij ≥ max(L,R)− 1 ≥ (min(L,R) + 1)− 1 = min(L,R).

Since min(L,R) achieves the lower bound it must be optimal. To
construct a solution with such cost we choose one of the two ex-
treme splits, namely si; (si+1 . . . sj) or (si . . . sj−1); sj . �

Theorem 4.3 reduces the complexity of the sequential split to
O(1) when L 6= R. See the example in Section 3.4, where this

optimisation could have been used to avoid checking all 4 possible
splits. The theorem is not applicable in the L = R case, but we
conjecture that this case can also be solved inO(1) amortized time.
We leave this for future work.

4.3 Optimising Rearrangement
The rearrangement algorithm in Figure 4 considers every partition-
ing of every segment, which means a naı̈ve implementation would
require time exponential in the length of the statement sequence.
However, since subsequences are examined multiple times, we can
apply dynamic programming. Caching the result for a subsequence
makes the algorithm as a whole O(n3): we have O(n) start points,
O(n) end points, and processing each subsequence is O(n).

This algorithm is almost identical to the CockeYoungerKasami
(CYK) parsing algorithm, which finds all the parses for a string
of length n for a context-free grammar. It works bottom-up, by
considering sequences of unit length, then sequences of length 2,
and so on.

In our case, rather than finding all parses for each subsequence,
we are only interested in the optimal parse (this does not affect
the time complexity, only space). Furthermore, in practice, find-
ing the top-level parallelism using segments tends to prune the
search space considerably, and many subsequences need not be
considered. Thus, rather than populating the matrix of possibili-
ties bottom-up as in CYK parsing, it is better to use a lazy cache in
which values for each subsequence are calculated if necessary and
then cached. This is easily implemented in Haskell as a lazy array
or map.

5. Implementation and Results
Our implementation of applicative do-notation is included in GHC
8.0.1. as the ApplicativeDo language extension. Language exten-
sions are enabled explicitly in GHC, either by a declaration in the
source file, or by a command-line option to the compiler.

5.1 Implementation Architecture
The implementation follows a slightly different pattern than the
presentation in Section 3, although the overall result is the same.
There are two competing concerns in the implementation:

• We want to perform our transformation before type infer-
ence, because it affects inferred types. Some do expressions
require only Functor (see Section 3.5), some require only
Applicative, and the rest require Monad.
Furthermore, it is useful to do desugaring during the name-
resolution phase (renaming) that comes before type inference,
because information about free variables (which is required by
both rearrange and desugar) is readily to hand during this stage.

• On the other hand, if there is a type error in the code, we want
to present type errors to the user in terms of the original source
code and not the rearranged code that our algorithm produces.
For this reason we can’t just apply rearrange and desugar
before typechecking, because the shape of the original code
is lost. GHC performs desugaring for all the other syntactic
constructs after type inference for this very reason.

The solution we use is for rearrangement to annotate the ab-
stract syntax tree with enough information that the type checker
can infer the correct type, and so that the later desugaring phase can
produce the correct applicative expressions. We have to be careful
to strip the annotations when reporting code fragments back in the
form of errors or warnings.

Type inference needs to infer the types of the operators used by
do notation desugaring: <$>, <*>, and >>=, because GHC supports



a language extension called RebindableSyntax, in which oper-
ators needed during desugaring refer to whatever operators with
these names are in scope, rather than the specific instances of these
operators from the standard library. Even though the typechecker
is inferring the types of these operators, it must be careful that any
type errors in the code do not appear when inferring the types of
these operators, and instead are reported against constructs in the
original source code. This is rather delicate, but possible if careful
attention is paid to the the order of unification when type-checking
do expressions.

5.2 Optimality vs. Compile Time
The optimal algorithm we described earlier has complexity O(n3),
which can have a severe impact on compile time for larger do

expressions (we will give some figures in Section 5.4). Out of a
desire for more predictable compile times, we also implemented a
heuristic version of our algorithm that improves the complexity to
O(n2) at the expense of optimality in some cases.

The heuristic version of the algorithm abandons the exhaustive
search in split in favour of a local decision: we split the sequence
after the longest initial subsequence of mutually-independent state-
ments. Since we never examine a subsequence multiple times, this
also avoids the need to use dynamic programming.

This policy was arrived at after considering examples that arose
in the wild, and tends to do well: we achieve the optimal result in
about 98% of cases (measurements will be presented in more detail
in the next section). The heuristic algorithm is currently the default
in GHC, while the optimal one is available as an option.

One could imagine alternative heuristics that might produce
better results. For example, we could use the optimal split for short
sequences but a local decision for larger ones. We leave for future
work a more thorough investigation of alternatives here.

5.3 Results: How Often Does ApplicativeDo Apply?
We tested ApplicativeDo on two large codebases:

• 11884 Haskell packages from LTS Stackage 3.25. In total the
Haskell code in these packages contained 38,850 do expres-
sions, of which 16,293 (41.9%) included at least one use of
<*> when translated by ApplicativeDo. Furthermore, 10,899
(28.0%) were fully desugared into Applicative and Functor
combinators and thus would not require a Monad constraint.
The optimal algorithm found a better rearrangement than the
heuristic algorithm in 226 cases, which is 0.6% of all do expres-
sions, and 1.4% of those where ApplicativeDo introduced
<*>.

• The Haxl codebase at Facebook. In here there were 28,273 do

expressions, ApplicativeDo used at least one <*> in 5,498
cases (19.4%), and 7,600 (26.9%) were fully desugared into
Applicative and/or Functor.
The optimal algorithm found a better rearrangement in 141
cases, which is 0.4% of all do expressions, and 2.6% of those
where ApplicativeDo introduced <*>.

Figure 6 is a histogram with our cost measure on the x axis
and the number of do expressions with that cost on the logarith-
mic y axis, for the Stackage codebase. There are two data sets:
first without applying ApplicativeDo (the dotted lines, where the
heavier dotted line is a moving average of width 4) and after ap-
plying the heuristic ApplicativeDo (the solid red line). Without
ApplicativeDo, the cost is equal to the number of statements in

4 About 160 packages failed to compile, mostly due to missing C library
dependencies on the host platform.
5 https://www.stackage.org/lts-3.2
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Figure 6. Frequency of do expression costs in Stackage packages,
before and after ApplicativeDo

the sequence. We truncated the x axis at 50 to give a better view of
the more common sizes to the left; in fact there were a few extreme
outliers with costs over 300.

Without ApplicativeDo, the median cost is 2 and the 99th
percentile is 30, and after ApplitiveDo the median cost is also
2, although the 99th percentile is 6. It is clear from these results
that ApplicativeDo finds plenty of opportunity for parallelism in
the do expressions that occur in typical Haskell code.

There is a strangely regular pattern of spikes in the pre-
ApplicativeDo data. We investigated this, and it turned out to
be due to derived instances of the Read class in automatically-
generated code in the amazonka family of packages. Derived Read
generates do expressions for parsing, and these packages contain a
lot of data types with similar shapes.

5.4 Compile-Time Overhead
Worst case. We measured the compile time for a single file con-
taining a do expression with 1000 statements in which each state-
ment depends on the previous one, so that there are no segments.
Compiling this file without optimisation:

without ApplicativeDo 1.22s
with ApplicativeDo (heuristic) 1.46s (20% slower)
with ApplicativeDo (optimal) 55.5s (4549% slower)

Note that in all cases the code being generated is the same,
because there are no opportunities for ApplicativeDo to in-
troduce the <*> operator, so the overhead is due purely to the
ApplicativeDo algorithm itself.

This is only one data point, and we can make both versions
of ApplicativeDo arbitrarily slow by using a large enough do

expression. But 1000 statements is extremely rare (in LTS Stackage
3.2 the largest was 302), so our heuristic algorithm will not have a
noticeable effect on compile-time. However, the optimal version of
the algorithm can have a significant effect on compile time—at 300
statements it imposes a 400% overhead—which is why we left it as
an option.

https://www.stackage.org/lts-3.2


Average case. We measured the compile-time overhead of both
variants of ApplicativeDo for our Haxl codebase. We measure
unoptimised compile-time, so as not to dilute the compile-time
with the extra cost of optimisation. These measurements were the
average of three complete compiles, and we give error bounds to 2
standard deviations:

without ApplicativeDo 450s +/- 2s
with ApplicativeDo (heuristic) 449s +/- 2s
with ApplicativeDo (optimal) 449s +/- 2s

There was essentially no measurable difference between the
three modes. Neither the heuristic nor the optimal ApplicativeDo
algorithms have any measurable impact on the compile time for this
codebase.

We did not measure compile time for the Stackage codebase,
because the build system performs a lot of activities that are not
compiling Haskell files (configuration, installing packages, and so
forth), so it was not possible to get a meaningful measurement.

5.5 Performance Improvement
Sigma is a general detection system at Facebook. Amongst other
things, it classifies actions on Facebook to detect spam and other
kinds of abuse. Sigma handles over one million requests per second
using many machines across Facebook’s different data centers.

Classification is performed by a set of rules, which are imple-
mented in Haskell using the Haxl framework and a set of libraries
developed for interacting with other back-end services. The rule
code uses do notation, and the ApplicativeDo transformation en-
sures that this code exploits the Applicative operators that allow
data-fetching requests to be batched and overlapped with the Haxl
monad.

It is difficult to get an accurate measure of the benefit obtained
from ApplicativeDo, because there are a huge number of vari-
ables. The effect we want to measure is the difference in concur-
rency when accessing external systems, which is inherently unpre-
dictable: those other systems have their own varying performance
characteristics due to caching and load differences. Moreover, the
underlying data may change, so requests cannot be reliably re-
played.

With these variables in mind, we measured Sigma performance
as follows. We measured three common request types indepen-
dently (Sigma handles hundreds of different requests), to eliminate
differences in workload mix. For each request type, we took a sam-
ple of recent production requests, and measured the average latency
of these requests with and without ApplicativeDo. We ran Sigma
in single-threaded mode—normally Sigma runs with many threads
processing requests in parallel, but for our purposes that would in-
troduce more variables and obscure the latency difference we are
trying to measure. Each separate test had to use a brand new sam-
ple of traffic, to mitigate the effects of external caching. We used
a large enough traffic sample that the run lasted several minutes in
each case, to mitigate the effects of differences in the samples.

• In request type 1 (typical latency around 150ms) there was a
44% improvement in average latency with ApplicativeDo.

• In request type 2 (typical latency around 125ms), there was a
34% improvement in average latency with ApplicativeDo.

• In request type 3 (typical latency around 12ms), there was a
22% improvement in average latency with ApplicativeDo.

6. Applications of Applicative do-Notation
Haskell’s do-notation does not add new expressive power to the lan-
guage; it is just syntactic sugar. But it is powerful syntactic sugar,
and in practice do-notation is ubiquitous in Haskell programs. By

extending do-notation to applicative functors we make two main
gains. First, we can use do-notation for types that are Applicative
but not Monad. Second, even where the type is a Monad there may
be compelling efficiency reasons for wanting to use Applicative
combinators wherever possible. Our main example, Haxl, gains
parallelism thereby, but there are monads where the program is
asymptotically more efficient if you use Applicative combina-
tors. In this section we review examples of both these gains.

6.1 Parsing Command-Line Options
The optparse-applicative package is a library for parsing
command-line options. It provides an Applicative (but not
Monad) abstraction which serves two purposes: it builds the data
structure representing the options, while at the same time specify-
ing how to parse them. Here is how it looks without AppliativeDo:

data Options = Options
{ input :: FilePath
, verbose :: Bool }

options :: Parser Options
options =
(λi v → Options { input = i

, verbose = v })
<$> strOption ( long "input"

<> help "Input file" )
<*> switch ( long "verbose"

<> help "Whether to be verbose" )

Here, options specifies a parser for two options, --input and
--verbose, and a data structure, Options, to hold their values.

The problem is that we want to define the Options type us-
ing record syntax because it’s more extensible, but using record
syntax in the parser is cumbersome. We have to match the order
of the arguments in the applicative expression with the order of the
lambda-bound variables, which can become error prone when there
are many options. For this reason people often abandon record syn-
tax when building parsers for optparse-applicative, but that
also sacrifices easy extensibility.

Using do notation with ApplicativeDo is cleaner and more
extensible:

options :: Parser Options
options = do

i ← strOption ( long "input"
<> help "Input file" )

v ← switch ( long "verbose"
<> help "Whether to be verbose" )

return Options
{ input = i
, verbose = v }

6.2 The Seq Data Type
In the containers package, Seq provides a length-annotated
finger-tree [7] as a general-purpose catenable sequence type. The
>>= operation for Seq behaves in the same way as lists: it applies
the second argument for each element of the sequence returned by
the first argument, and so has complexity O(mn).

The <*> operation, on the other hand, can exploit the fact that
it will be concatenating many trees of the same size, and by using
lazy evaluation is able to provide access to a single element of the
result in at mostO(m+logn), even though accessing the whole of
the result is still O(mn). For example, with ApplicativeDo, this:

take 10 $ reverse $
do { x ← a; y ← b; return (x+y) }



is instantaneous, but without ApplicativeDo it requires the full
O(mn) where m and n are the lengths of a and b. Of course
we could write this explicitly using <*>, but the do notation is
clearer and allows us to use real Monad bind when necessary too.
Seq also provides an efficient <$>, which our new desugaring takes
advantage of.

6.3 LL(1) Parsing
Swierstra and Duponcheel [20] described an non-monadic LL(1)
parser that is guaranteed to parse a proper LL(1) grammar in linear
time. It does so by tracking a FIRST set for each parser. It is also
capable of checking if such a parser is really LL(1) or if it contains
FIRST/FIRST or FIRST/FOLLOW set conflicts.

The FIRST set for a parser contains the set of terminals that this
parser is able to accept as the first symbol of a successful parse and
a flag to indicate whether or not an empty parse will be accepted.

Such a parser extends to a Monad at the cost of the linear
time guarantee and ability to check a parser for FIRST/FIRST and
FIRST/FOLLOW conflicts, while retaining this guarantee for the
Applicative fragment.

6.4 Heap of Successes Parsing
We can modify Wadler’s “List of Successes” parser [21] in two
ways to allow for more efficient Applicative parsing in the pres-
ence of heavy non-determinism.

newtype Parser a = Parser (String → [(a, String)]

Borrowing the notion of an update monad from Ahman and
Uustalu [1], instead of giving back the new String, we can give
back how much of the string we’ve consumed, and between parse
steps drop this many characters from the String. This costs us
the ability to “push back” input we haven’t actually consumed, but
opens up the next option.

newtype UpdateParser a = Parser (String → [(a, Int)]

Next we can track a heap of successes rather than a list, sorted
by length.

newtype HeapParser a = Parser(String → IntHeap [a])

Now, code written using <*> needs only execute the right hand
parser once per distinct length, rather than once per distinct parse.
By further augmenting such a structure, we could recover the orig-
inal parse order.

6.5 Moore Machines
A possibly-infinite Moore machine with states labeled by b and
transitions labeled by a can be represented with explicit state as the
following GADT:

data Moore a b where

Moore :: (r → b) → (r → a → r) → r → Moore a b

instance Applicative (Moore a) where

pure a = Moore (const a) const ()
Moore xf bxx xz <*> Moore ya byy yz = Moore
(λ(x, y) → xf x $ ya y)
(λ(x, y) b → (bxx x b, byy y b))
(xz, yz)

The implementation of <*> for such a machine takes the product
of the state spaces and builds a new machine.6 Another way to think

6 To avoid leaking memory a product type strict in both arguments really
should be used instead of (,).

of such a machine is as a strict left fold [19], and <*> takes two
independent folds and melds them in a single pass.

There even exists a Monad for this type, but it is grossly inef-
ficient. It can be obtained by showing that Moore a b is naturally
isomorphic to [a] -> b. To operate it has to record every value the
machine is fed, and then feed each machine that labels our states
the entire input seen thus far, just to take a single output from each
machine.

With ApplicativeDo, we can work fairly naturally with such
machines without incurring the horrible overhead of the Monad,
whenever the passes are independent.

sum :: Num a => Moore a a
sum = Moore id (+) 0

length :: Moore a Int
length = Moore id (λx _ → x + 1) 0

mean :: Fractional a => Moore a a
mean = do

a ← sum
b ← length
return (a / fromIntegral b)

That said, the Monad cannot be avoided entirely, as some com-
putations simply require multiple passes over the data, such as com-
puting robust statistics like median absolute deviation, which re-
quires a pass to compute the median followed by another depen-
dent pass to compute the median distance to the median we just
identified.

7. Related Work
7.1 Extracting Parallelism
Extracting parallelism automatically from programs is a much stud-
ied problem. Two approaches dominate: extracting implicit paral-
lelism from a program written in a largely-unmodified host lan-
guage, or expressing parallelism explicitly with a domain-specific
language or library, such as map/reduce [5], LINQ [8] or Accelerate
[3].

Applicative do-notation combines features of both:

• The possibility of parallelism is signalled explicitly by the use
of do notation, but

• A lexical dependency analysis is used to figure out exactly
which statements can be run in parallel.

Moreover, in Haxl there is a runtime component too: a computation
is only run in parallel if it initiates a remote data fetch.

7.2 Idiom Brackets
Idiom brackets [16] provide a concise syntax for writing applicative
expressions, where [|f e1 . . . en|] is equivalent to
f <$> e1 <*> . . . <*> en

The special syntactic form is used heavily in Idris [2] and is also
implemented in the She Haskell preprocessor [15]. With ingenious
use of overloading a similar syntax can be implemented in Haskell
itself7, and idiom brackets have also been implemented via GHC’s
quasi-quotation extension [12].

Compared with applicative do-notation, idiom bracket syntax
only provides an abbreviation for applicative expressions. It doesn’t
allow for a mixture of applicative and monad operations, nor does
it provide the flexibility of the do syntax when used with a pure
applicative, as we described in Section 6.

7 https://wiki.haskell.org/Idiom_brackets
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The F# language has an experimental extension (implemented
in a research branch), that supports a parallel (applicative) binding
form in F#’s computation expressions [17] (the equivalent of do
notation). The use of applicative binding is fully explicit, rather
than implicit as in our case.

7.3 Formlets
Formlets [4] describe an abstraction for defining parts of a web
page. The abstraction is based on applicative functors, and the syn-
tax for defining a formlet is essentially do-notation for applicative
functors, albeit with the binding arrows reversed and embedded in
HTML. The difference from our work is that the syntax only covers
applicative functors, not monads.

7.4 Monad Comprehensions
Monad comprehensions [6] also includes a “|” operator in its
syntax for statement sequences. In Monad Comprehensions, the
“|” operator desugars into a call to mzip from the MonadZip
class, which for lists is equal to zip, while for other monads
such as Maybe it is equal to liftM2 (,). For monads where
mzip = liftM2 (,), the “|” syntax of Monad Comprehensions
can be used to write applicative expressions, since liftM2 = liftA2.
Therefore, for some monads, Monad Comprehensions provides an
explicit way to combine computations applicatively within a monad
comprehension. However, this is somewhat accidental, since the in-
tention of the “|” operator in Monad Comprehensions is to support
zipping, and the MonadZip class was introduced as the natural
generalisation to monads of zipping on lists.

It is not in general semantics-preserving to flatten the “|” oper-
ator of a monad comprehension to a sequence, unlike in our syn-
tax, and thus monad comprehensions cannot automatically intro-
duce “|” via a rearrange transformation.

While we have not done so yet, we believe it would be entirely
possible to apply ApplicativeDo to monad comprehensions, and
we do not anticipate any complications with doing that.

7.5 Other Related Work
The Arrow Calculus of Lindley, Wadler and Yallop [11] includes a
form of let-binding which can be viewed as being like do-notation
for applicative functors, arrows, and monads. Lindley later de-
scribed a different calculus based on algebraic effects and call-by-
push-value [10] that also gives rise to a form of do-notation for
applicative functors, arrows, and monads.

8. Conclusion and Future Directions
Applicative do-notation has characteristics of both syntactic sugar
and compiler optimisation, which is somewhat unusual. When used
with a non-Monad, applicative do-notation behaves like syntactic
sugar: it is obvious when it applies, and what effect it will have.
But when used with a Monad, it is arguably not transparent to the
programmer where the compiler will introduce applicative opera-
tors, and indeed the applicative structure that the compiler derives
may change as the code is refactored. This is a feature, not a bug:
the aim is to provide a notation that abstracts away from the ap-
plicative structure while still being able to take advantage of the
applicative operators. Applicative do-notation works well for those
situations where functionality and ease of refactoring take prece-
dence over performance, but we’re not prepared to give up on per-
formance altogether.

That said, we do not claim that do-notation is universally bet-
ter than explicit applicatives. Indeed, in many simple cases, using
explicit applicative combinators is both shorter and more readable
than do-notation; but our experience is that this becomes less true
as the complexity of expressions increases. When a do-notation

expression contains tens of statements, writing it with explicit ap-
plicatives is unwieldy to say the least, and doing it optimally is
virtually impossible. Applicative do-notation works well in these
cases.

In performance-critical situations where the programmer wants
to be certain that they are achieving the desired applicative struc-
ture, they can still write explicit applicative code. Indeed, as we
mentioned in Section 3.10, we believe that exposing the “|” oper-
ator from our abstract syntax at the source level (in some form)
would be helpful in allowing programmers to be explicit about the
applicative structure. This is a possible direction for future work.

A couple of other areas we plan to explore are:

• Our desugaring does not currently exploit the *> or <* combi-
nators that Applicative provides, and in certain cases using
these operators instead of <*> can result in performance bene-
fits.

• It is possible, but unimplemented, to further reduce the search
space for split by observing that our dynamic programming so-
lution has the same structure as a minimax problem allowing
us to exploit alpha-beta pruning [9], computing an alpha-beta
bounded transposition table rather than a classic dynamic pro-
gram.
MTD(f) [18] is a particularly applicable pruning technique, be-
cause the length of a do expression acts as a conservative upper
bound on our cost function, our result is an integer drawn from
a very small range, and our transposition table is considerably
smaller than that of most games to which it has been applied.
MTD(f) would not improve the worst-case cost of computing
an optimal solution, but based on limited experimentation, it
should bring some extreme examples, such as the one in Sec-
tion 5.4, back into line with heuristic compile times. In addition,
with MTD(f), we could allow a parameterized early cut-off, to
smoothly interpolate between the heuristic and optimal algo-
rithms.
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